
Q2

Proc. R. Soc. B

doi:10.1098/rspb.2005.3431

ARTICLE IN PRESS

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65
66

67

68

69

70

71

72

73

74

75

76

77

78

79

80
Out of Gondwanaland; the evolutionary history
of cooperative breeding and social behaviour

among crows, magpies, jays and allies
Jan Ekman1,2,* and Per G. P. Ericson3

1Population Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D,
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Cooperative breeding is comparatively rare among birds on the mainly temperate and boreal Northern

Hemisphere. Here we test if the distribution of breeding system reflects a response to latitude in a

phylogenetic analysis using correlates with geographical range among the corvids (crows, jays, magpies and

allied groups). The corvids trace their ancestry to the predominantly cooperative ‘Corvida’ branch of

oscine passerines from the Australo-Papuan region on the ancient Gondwanaland supercontinent, but we

could not confirm the ancestral state of the breeding system within the family, while family cohesion may

be ancestral. Initial diversification among pair-breeding taxa that are basal in the corvid phylogeny

represented by genera, such as Pyrrhocorax and Dendrocitta, indicates that the corvid family in its current

form could have evolved from pair-breeding ancestors only after they had escaped the Australo-Papuan

shield. Within the family, cooperative breeding (alloparental care/family cohesion) is strongly correlated to

latitude and its predominance in species maintaining a southerly distribution indicates a secondary

evolution of cooperative breeding in the lineage leading away from the basal corvids. Multiple transitions

show plasticity in the breeding system, indicating a response to latitude rather than evolutionary inertia.

The evolutionary background to the loss of cooperative breeding among species with a northerly

distribution is complex and differs between species, indicating a response to a variety of selection forces.

Family cohesion where the offspring provide alloparental care is a main route to cooperatively breeding

groups among corvids. Some corvid species only lost alloparental care while maintaining coherent family

groups. Other species lost family cohesion, and as a corollary they also lost the behaviour, where retained

offspring provide alloparental care.
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1. INTRODUCTION

Recent estimates point to that cooperative breeding

involving contribution of more than two birds either as

co-breeders or non-breeding extra-birds is more common

than previously recognized. For instance, as many as one-

quarter of all oscine passerines are currently estimated to

reproduce cooperatively (Cockburn 2003). Phylogenetic

analyses have recognized a strong role of history

predisposing species to breed cooperatively, which is

identified as the ancestral state of the breeding system in

several avian lineages (Russell 1989; Edwards & Naeem

1993; Cockburn 1996; Nicholls et al. 2000; Ligon & Burt

2004). In contrast, ecological context, design and life-

history traits conducive to cooperative breeding remains

less well understood, with contradictory results for the role

of factors like environmental unpredictability (Ford et al.

1988; Du Plessis et al. 1995) and longevity (Arnold &

Owens 1998; Cockburn 2003).
r and address for correspondence: Population Biology/De-
t of Ecology and Evolution, Evolutionary Biology Centre,
University, Norbyvägen 18D, 752 36 Uppsala, Sweden
an@ebc.uu.se).
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1

Here we explore the evolutionary history of the

breeding system and social behaviour among crows, jays,

magpies and allied groups during their range expansion

out of an area of origin on the Southern Hemisphere.

A historic perspective offers an opportunity to integrate

ecological factors and design features that commit extant

species to cooperative breeding. Apart from identifying

evolutionary stasis or revealing the direction of evolution-

ary changes, such an analysis may provide clues to the role

of ecological conditions driving evolutionary change.

Broad-scale comparative analyses can reveal general

patterns in covariation between behavioural traits, such

as the breeding system and ecological conditions.

However, extant species differ not only in the ecological

conditions of their environment. As a result of separate

evolutionary histories and diversification, lineages differ

also in design and associated life-history traits (Ridley

1983; Harvey & Pagel 1991; Winkler 2000). The role of

ecology is therefore best seen in clades, which are more

homogenous as the result of a more recent shared history.

The corvids (Corvini sensu Sibley & Monroe 1990;

Corvidae sensu Dickinson 2003) is a monophyletic group

within the oscine passerines, presumably with a relatively
0
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Late Middle Tertiary origin (Feduccia 1995). The

relatively recent origin coupled with a homogenous design

within the group makes it suitable for a comparative test.

A main feature of avian cooperative breeding is its

relative paucity on the temperate and boreal landmasses of

the Northern Hemisphere, reflecting the current

geographical distribution within the species-rich Passerida

branch of the oscine passerines (Cockburn 2003). Corvids

trace their ancestry to the other main branch of the oscine

passerine called ‘Corvida’ by Sibley &Monroe (1990) and

consisting of several highly cooperative lineages (Cockburn

1996; Nicholls et al. 2000; Ligon & Burt 2004) of

Gondwanan origin and currently found mainly in the

Australo-Papuan region (Barker et al. 2002; Ericson et al.

2002). An ancestry among cooperative lineages coupled

with a Southern Hemisphere origin offers the opportunity

for a comparative analysis of the response in breeding

system to latitude.Corvids are suited for such a test in being

exceptional among Corvida in the sense that they have

dispersed extensively beyond the Australo-Papuan region,

while cooperatively breeding birds normally are character-

ized by a limited dispersal capacity (Cockburn 2003). The

corvid family itself may have evolved out of more dispersal

prone pair-breeding representatives among cooperative

clades (Cockburn 2003) somewhere in Southeast Asia only

after their shrike-corvid ancestor had escaped Australo-

Papua proper (Barker et al. 2004; Ericson et al. 2005). Yet,

the group is well known for its complex social behaviours

that has attractedmuch attention, and is comparativelywell

studied (for instance, Brown1963a,b, 1970, 1974;Verbeek

& Butler 1981; Woolfenden & Fitzpatrick 1984; Sever-

inghaus 1987; Skutch 1987; Brown & Brown 1990;

Marzluff & Balda 1990; Richner 1990; Ekman et al.

1994; Baglione et al. 2002a).

0.1

Figure 1. Dataset with branch lengths. Species used in
reconstruction of phylogeny—Dendrocitta formosae, Pyrrho-
corax pyrrhocorax, Cyanopica cyana, Cyanolyca viridicyana,
Cyanocitta cristata, Gymnorhinus cyanocephala, Aphelocoma
coerulescens, Cyanocorax chrysops, Psilorhinus morio, Nucifraga
caryocataces, Corvus corone, Corvus monedula, Zavattariornis
stresemanni, Pica pica, Garrulus glandarius, Garrulus lidthi,
Perisoreus infaustus, Perisoreus internigrans, Cissa chinensis,
Urocissa erythrorhyncha.
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2. MATERIAL AND METHODS
The characters of species do not represent evolutionary

independent events, but species similarity due to common

descent as reflected in a phylogenetic tree has to be controlled

for (Harvey & Pagel 1991; Harvey & Purvis 1991). Our

analysis focuses on two traits: family cohesion and allopar-

ental care by retained offspring. Both these characters are

bivariate, and the DISCRETE v. 1.0.1b software, which

provides maximum-likelihood reconstruction of ancestral

states and correlated character evolution for discrete char-

acters on a bifurcate phylogeny, is designed to analyse such

characters (Pagel 1994, 1997, 1999a,b). A main advantage of

the DISCRETE algorithm is that the analysis of correlated

character evolution is not dependent upon the reconstruction

of ancestral states, while the maximization process takes its

beginning at random points in the phylogeny. The recon-

struction of the ancestral distribution of traits in the

DISCRETE program can either be ‘global’ assigning a state

to all nodes in the phylogeny or it can be ‘local’ and find the

values for specific nodes (Pagel 1999b). A special case of the

local reconstruction is to find the states at the roots.

The ancestral state reconstruction and analyses of

correlated character evolution were run, including branch

lengths calculated from cytochrome b using PAUP v. 4.0b10

(Swofford 1998). The phylogeny we use is the hypothesis of

Ericson et al. (2005) reconstructed from the combined data of

one mitochondrial (cytochrome b) and two nuclear (rag-1

and myoglobin) genes (figure 1). Branch lengths are in our
RSPB 20053431—21/12/2005—10:44—-[-no entity-]-—194681—XML – pp.
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analysis estimated from cytochrome b data. There was no

support for the position of Cyanopica in the analysis of

Ericson et al. (2005) and a tree based on cytochrome b gene

alone gave it a different position in the tree used here. Species

included in the analysis are listed in appendix A. Based on

molecular data, two monospecific genera (Platylophus,

Pseudopodoces) traditionally considered to be corvids are

here excluded ( James et al. 2002; Ericson et al. 2005),

leaving 119 species from 23 genera in the group (Madge &

Burn 1994). There are 2n possible assignments of ancestral

states in a phylogeny with n nodes, and computations

therefore grow fast with the number of species included.

Taxa on the same branch and sharing traits contribute only

insignificantly to the result in the DISCRETE algorithm

(Pagel 1994), and computations could thus be reduced by

collapsing nodes for such taxa. Species could be clustered and

used as terminal taxa for genera with no known variation in

trait combinations. Hence, we clustered congeneric species

within the genera Nucifraga, Cissa, Urocissa, Dendrocitta,
1–10
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Pyrrhocorax and Pica. For the same reason it was possible to

cluster genera on the same branch sharing trait combinations

(Zavattariornis/Ptilostomus and Cyanocorax/Psilorhinus).

A first test run included within-genus variation in trait

combinations among three genera, where we have data on

branch length on species level (Garrulus, Corvus, Perisoreus;

figure 1). In an extended dataset of a second run, we further

included variation on species level within another four genera

(Aphelocoma, Cyanocorax, Cyanolyca, Cyanocitta), although

we did not have data on branch length for species as terminal

taxon. For this run we included following species in addition

to the taxa in figure 1: Aphelocoma californica, Cyanocorax

yncas (Texas population), Cyanolyca nana and Cyanocitta

stelleri (test for family cohesion only). Species within these

four genera were treated as sister groups to their congeners

with nodes of branches leading to these species assumed to be

located half ways down the branch leading to their congeners.

Branch length is taken into account in the DISCRETE

algorithm and the role of branch length can be tested through

the kappa parameter. A value approaching zero signifies a

punctuational mode of evolution, where branch length

contributes only insignificantly to the solution, while a

kappa value of unity represents a uniform rate of evolution

(Pagel 1997). With a kappa value of 0.00054 for the corvids

branch length should be of minor significance for the

DISCRETE solution, justifying an inclusion of species

providing additional information on trait values despite the

lack of data on branch length.

The DISCRETE algorithm is based on forward (a) and

backward (b) transition rates of a bivariate trait within the

phylogeny. These transitions rates for traits can be either

different (two-parameter model) or identical (one-

parameter model). A two-parameter model can generate

paradoxical result and it is justified only if it produces a

better fit to the data than a one-parameter model. Else the

one-parameter model should be chosen as default

(Mooers & Schluter 1999; Pagel 1999b). Here there was

no support for a better fit from a two-parameter model

(likelihoodZK24.6045; one-parameter model likeli-

hoodZK24.7036; likelihood ratioZ0.0991, pZ0.75) for

the corvid data on alloparental care. For the data on family

cohesion the two-parameter model (likelihoodZK20.7971)

produced a fit that nearly, but not fully, significantly

improved the fit from a one-parameter model (like-

lihoodZK22.7094; likelihood ratioZ3.8246, pZ0.0505).

The ancestral distributions and correlated character

evolution were therefore analysed with a one-parameter

model (aZb). Correlated evolution of characters is tested

by comparing the likelihood of a model, assuming the traits

to be independent (H0) to one where the evolution of the

traits is linked (H1). The likelihood ratio statisticsZK2

[(likelihood H0)K(likelihood H1)] can be assumed to be c2-

distributed and the probability of H1 can be estimated from

testing it against a null hypothesis based on transitions rates

generated from resampling of the original distribution using

the DISCRETE software (Pagel 1997).
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3. CHARACTERS
(a) Breeding system and family cohesion

The wealth of information on breeding system and social

behaviour among corvids is summarized in Brown (1987),

Skutch (1987), Madge & Burn (1994) and Cockburn

(2003). Primary sources for the data used here are listed in
RSPB 20053431—21/12/2005—10:44—-[-no entity-]-—194681—XML – pp. 1–1
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appendix A. Cooperative breeding is conventionally

identified from the presence of extra-birds helping to

breed (alloparenting), and is as such a bivariate trait in the

form required by the DISCRETE program. Delayed

offspring dispersal is the main route to become an

alloparenting extra-bird among corvids and family cohe-

sion is thus a prerequisite for cooperative breeding (Skutch

1987). We therefore also tested for environmental

correlates to family cohesion. As an operative definition,

dispersal is conventionally considered to be delayed if

mature offspring remain past a breeding season, and

identification of retained offspring normally requires

colour-banding. Such data on family cohesion are lacking

for a couple of less studied genera with tropical and

subtropical distribution (Cissa, Dendrocitta) reported to

live in family groups while breeding as pairs (Madge &

Burn 1994). We tentatively treated Cissa and Dendrocitta

as having delayed dispersal in the test for family cohesion

including cooperatively breeding species and corvid

species, where colour-banding identified coherent family

groups in the absence of alloparental care. In depth studies

of a number of other corvid species have revealed that

unassisted pair-breeding is not an uncommon breeding

system within coherent families (Verbeek & Butler 1981;

Gayou 1986; Eden 1987; Strickland 1991; Ekman et al.

1994; Caffrey 2000). We further included Steller’s jay

(C. stelleri ), while the offspring maintain a prolonged

parent association into the non-breeding season (Brown

1963b). To test for the effect of using this more inclusive

definition of delayed dispersal, we also ran analyses

without Cissa, Dendrocitta and C. stelleri.
(b) Distribution

To analyse for any responses in breeding system to the

expansion out of their area of origin in Australo-Papuan

region (Sibley & Ahlquist 1990; Barker et al. 2002;

Ericson et al. 2002, 2005), the latitudinal distribution of

corvids was dichotomized. Species were assigned to the

two categories based on the northernmost point of

distribution taken to characterize the conditions limiting

the expansion northwards. Distributions were taken from

Madge & Burn (1994) and references therein. Few

terminal taxa had the northern limit of their distribution

in the range between around 55 and 608N, which was

used as cut-off points to characterize species with a

northern and a southern distribution in our analysis. One

group of seven terminal taxa had their distribution limit

around 608 N or further north, while the distribution did

not reach further north than around 558N for another

group of 15 terminal taxa. This criterion correlated

strongly to the midpoint of distribution limits for each

species (rZ0.92, p!0.0001).
(c) Habitat

The corvids expanded out of the Australo-Papuan region

in Mid to Late Tertiary while it was covered with rain

forest (White 1987). The evolutionary history and

changes in the breeding system among extant corvids

was therefore also tested against habitat. The habitat was

represented by forest structure categorized as closed or

open which includes habitats ranging from forest edges to

clearings, parklands, open brush land and desert.
0



Table 1. Latitudinal distribution of delayed dispersal and alloparental care within genera or for species to represent within-
genera variation.

species distribution

breeding system

unassisted biparental care
delayed dispersal, no allopar-
ental care alloparental care

Northern Cyanocitta cristata Cyanocitta stelleri
Corvus monedula Pica pica
Nucifraga caryocatactes Perisoreus infaustus
Garrulus glandarius

Southern Cyanolyca nana Cissa chinensis Cyanocorax chrysops
Dendrocitta formosae Cyanolyca viridicyanea
Cyanocorax yncas Corvus corone (Spain)
Pyrrhocorax? Cyanopica cyana

Garrulus lidthi
Zavattariornis stresemanni
Perisoreus internigrans
Urocissa erythrorhyncha
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Figure 2. The reconstruction of the ancestral distribution of
alloparental care by the DISCRETE software. Dark,
alloparental care; light, no alloparental care; strippled,
breeding system uncertain.
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4. RESULTS
Alloparental care is known for 27 (32%) corvid species out

of 84 with known breeding system. With the exception of

Corvus caurinuswhere help is rare (Verbeek & Butler 1981)

and the cooperative Covus corax (Christensen & Grünkorn

1997), this list is identical to Cockburn (2003). The

mating system of cooperatively breeding corvids ranges

from monogamous pairs (for instance, Woolfenden &

Fitzpatrick 1984) to colonial breeders (Brown 1990;

Marzluff & Balda 1990). In addition, 26 solitary breeding

species are recorded to live in family groups which in some

of these species was be confirmed by in depth studies of

colour-banded individuals, while another 24 species are

recorded to live solitarily or in pairs. Thus, social cohesion

is strong among corvids and a majority of species (69%; 53

out of 77 species with known social system) living in

cohesive family groups.

(a) Latitude effects

There is a strong association between latitudinal distri-

bution and alloparental care (table 2). A global model

without any restrictions on the states at the root and based

on the data in table 1 returned a strong association

between absence of alloparental care and a northern

distribution (likelihood ratio statisticsZ12.5652, pZ
0.001; for test procedure see §2). This result was robust

to the inclusion of C. yncas (Texas population), C. nana,

A. californica (likelihood ratioZ8.5816, pZ0.001; for test

procedure see §2), where we lack data on branch length.

Inclusion of these three solitary breeders with a southern

distribution is conservative, while supporting the null

hypothesis that lack of alloparental care is not linked to a

northerly distribution.

Likewise a global model without restrictions on states at

the root also including C. yncas (Texas population),

C. nana and A. californica showed a strong association

between latitudinal distribution and family cohesion

(likelihood ratio statisticsZ15.7766, pZ0.001; for test

procedure see §2). The relationship between latitude and

delayed dispersal remained significant (likelihood ratioZ
12.8166, pZ0.001; for test procedure see §2) when we

included C. stelleri, where the offspring retains a prolonged

family cohesion (Brown 1963b) unlike in its congener
RSPB 20053431—21/12/2005—10:44—-[-no entity-]-—194681—XML – pp.
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Cyanocitta cristata. Classifying the Steller jay as having

delayed dispersal would be conservative, while it rather

supports the null hypothesis that the ancestral state of

natal philopatry has been retained at high latitudes. The

analysis was robust to reduction in the tree by collapsing

nodes for poorly studied species (Cissa, Dendrocitta) and

consistently returned an association between latitude and

family cohesion.

(b) Ancestral states

The correlation between breeding systems among corvids

indicates a loss of alloparental care and delayed dispersal

as they expanded their range northwards from having been

the ancestral states (Cockburn 1996, 2003; Nicholls et al.

2000; Ligon & Burt 2004). Indeed, a global model

without root restrictions and including C. yncas (Texas

population), C. nana and A. californica, in addition to the

terminal taxa in figure 1 returned a reconstruction of the
1–10
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Figure 3. The ancestral distribution of family cohesion
(delayed dispersal) by the DISCRETE software. Dark, family
cohesion (delayed dispersal); light, no family cohesion among
mature birds.
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ancestral distribution with alloparental care at all internal

nodes except for the one leading to the Perisoreus genus

(figure 2, likelihoodZK27.7255). Yet with a likelihood

ratio statistics/1 in a local model, the character states at

the root (alloparental care/no alloparental care) were not

identified with significance. The reconstruction was

however robust and returned alloparental care as the

ancestral state also when nodes were collapsed or data

removed for less well-studied genera (e.g. Cissa). A

corresponding analysis including C. stelleri identified

family cohesion (delayed dispersal) as the ancestral state

at all internal nodes (figure 3, likelihoodZK28.4550) and

as the state at the root in a local model (likelihood ratioZ
5.1932, d.f.Z1, pZ0.05). The reconstruction was robust

to removing C. stelleri, Cissa and Dendrocitta and collapsing

nodes close to the root.
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(c) Correlated evolution and the uncertainty of

ancestral states

To test for that the uncertainty in assignment of the

ancestral states of characters, the probability of that

alloparental care and delayed dispersal was correlated to

latitudinal distribution was investigated further for all four

possible combinations of character states at the roots

(table 2). Latitude showed a significant association to both

delayed dispersal and alloparental care for all combi-

nations of character states at the root verifying that the

association is robust to the uncertainty in assignment of

ancestral states.
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(d) Habitat

The analysis could not confirm a forest origin. A global

model without root restrictions is consistent with the

hypothesis that the ancestral habitat of the corvids was

closed forest (likelihoodZK36.4608). Yet, a local model

could not reconstruct the states at the root with any

significant, but both habitat states (closed forest/open

forest) are equally likely.
RSPB 20053431—21/12/2005—10:44—-[-no entity-]-—194681—XML – pp. 1–1
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5. DISCUSSION
We analysed cooperative breeding as a two-stage process,

where family cohesion (delayed dispersal) is the permiss-

ive condition for alloparental care. There would be several

caveats in confining the test for environmental correlates

to cooperative breeding to species with alloparental care

alone. Alloparental care could be selected against in

cohesive families, which in the absence of alloparental care

would be excluded from cooperative breeders and lumped

with species having unassisted uni- or bi-parental care

under the conventional definition of cooperative breeding.

Apart from separating an understanding of the reasons for

family cohesion as part of the explanation for cooperative

breeding this could be artificial and misrepresent the

processes promoting alloparental care. It would be more

reasonable to see the breeding system and the role of extra-

birds in cohesive families as the outcome of a parent/off-

spring conflict, where a solution with the offspring

providing no care is just an endpoint to a continuum of

different levels of alloparental care (Pruett-Jones 2004).

The absence of alloparental care among species living in

cohesive family units may hence be equally informative, as

its presence to selection forces shaping cooperative

breeding (Ekman et al. 2001a,b).

Cooperative breeding is a more frequent breeding

system among bird species with a distribution in tropical

and subtropical environments on the Southern Hemi-

sphere than in temperate and boreal regions of the

Northern Hemisphere (Rowley 1968, 1976; Fry 1977;

Brown 1987; Russell 1989). This latitudinal distribution

with its inherent correlation between climatic region and

breeding system has been a source of ideas for linking

environmental factors to the evolution of cooperative

breeding (Verbeek 1973; Brown 1974; Ford et al. 1988;

Ekman & Rosander 1992; Du Plessis et al. 1995; Russell

et al. 2004). Yet, so far the current evidence has identified

this pattern as the result of a evolutionary inertia among the

species-rich Passerida branch of the oscine passerines and

their currently mainly Northern Hemisphere distribution

(Cockburn 2003). This conclusion was based on the view

that the Passerida conserved their ancestral pair-breeding

system as they escaped from their Gondwanan origin via

theAustralo-Papuan region.This viewhas been challenged

by the discovery of a deep divergence in the Passerida

lineage revealing a second escape route out of Gondwana-

land over South-Africa suggesting older history in Africa

thanpreviously assumed (Barker et al. 2004;Beresford et al.

2005). Among taxa representing the deep divergence of the

AfricanPasserida lineage there are cooperative species (e.g.

rockjumpers genusChaetops), calling into question both by

which route the Passerida reached the Northern Hemi-

sphere, their ancestral breeding system, and to what extent

the Northern Hemisphere predominance of pair-breeding

represents evolutionary inertia. Among corvids there could

be several explanations to the latitude correlation to

breeding system, but in common they are consistent with

a response to latitude, where cooperation is selected against

with a northerly distribution either because it is lost or it has

not evolved secondarily like in congeners with a more

southerly distribution.

The corvid family in its current form is likely to have

originated outside Australo-Papua (Barker et al. 2004;

Ericson et al. 2005), and low dispersal proneness among

cooperative breeders indicates that the initial escape of the
0
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Table 2. Test for correlation between latitude and delayed dispersal (family cohesion; above) and alloparental care by retainede
offspring (below) for different states of latitude and trait value at the root.

root latitude
(0Zsouth;
1Znorth)

root delayed
dispersal (0Zno;
1Zyes)

independent
evolution log
likelihood

dependent
evolution log
likelihood

likelihood
ratio

p-value
(chi-square test)

0 0 26.7601 22.2532 9.0136 0.01
0 1 26.7362 22.6439 8.1846 0.01
1 0 26.3002 21.9852 8.6300 0.02
1 1 26.2763 22.2880 7.9764 0.02

root latitude
(0Zsouth;
1Znorth)

root alloparental
care (0Zno;
1Zyes)

independent
evolution log
likelihood

dependent
evolution log
likelihood

likelihood
ratio

p-value
(chi-square test)

0 0 27.3419 24.8211 5.0416 0.02
0 1 27.3399 24.8450 4.9898 0.02
1 0 27.4979 24.3450 6.2878 0.02
1 1 27.4959 24.8538 5.2840 0.02
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corvids lineage from the Australo-Papuan region may well

have been by pair-breeding representatives from coopera-

tive clades (Cockburn 2003). The initial diversification

among the corvids would then have involved more

dispersal prone pair-breeding taxa represented by genera,

such as Dendrocitta and Pyrrhocorax. This initial diversi-

fication would then have been followed by a secondary

evolution of alloparental care in the lineage leading away

from these basal branches. Our global reconstructions

could not identify the ancestral state of the breeding

system in the corvid family although they trace

their ancestry to highly cooperative Corvida lineages

(Cockburn 1996, 2003; Nicholls et al. 2000; Ligon &

Burt 2004). Our difficulties in identifying the ancestral

state reflect a labile breeding system among the Corvida,

where cooperative breeding has been lost and gained

several times (Ligon & Burt 2004).

The reconstruction of ancestral states shows that

cooperative breeding among corvids is a highly plastic

trait with multiple transitions (figures 2 and 3), but it also

indicates a diversity of selection forces involved in the

response of the breeding system to latitude. The

DISCRETE program did identify family cohesion as

ancestral and the absence of cooperation is in several taxa

(C. cristata, C. nana, A. californica, genus Nucifraga,

Garrulus glandarius/lanceolatus, and numerous species

within genus Corvus) associated with loss of family

cohesion. In other species, the offspring do not provide

alloparental care despite maintaining family cohesion

(Cissa, Dendrocitta, C. yncas—Texas population, Persisoreus

infaustus/canadensis, Pica pica, C. stelleri ). These species

maintain a social system that would be permissive to

selection for alloparental care. Yet, they do not breed

cooperatively. The most likely explanation for this absence

of alloparental care among coherent families is that

cooperative breeding is selected against. The prevalence

of cooperative breeding among congeners with a southern

distribution coupled to multiple transitions seems to

eliminate evolutionary inertia among an ancestrally non-

cooperative breeding system as explanation for its

geographical pattern. Multiple transitions in breeding

and social system among corvids reflect a highly plastic

behaviour, and our results are consistent with an analysis

of cooperative breeding in the acrocephaline warblers,
RSPB 20053431—21/12/2005—10:44—-[-no entity-]-—194681—XML – pp.
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where the breeding system was found to be equally labile

with links to food abundance and habitat (Leisler et al.

2002). This sensitivity of breeding systems to environ-

mental conditions goes well together with family cohesion

being responsive to manipulation of feeding conditions as

well as the social environment (Komdeur 1992; Baglione

et al. 2002b; Ekman & Griesser 2002; Covas et al. 2004),

and raises the question whether a consistently cooperative

breeding system within entire genera and over their entire

ranges reflects should be taken as evidence for evolution-

ary inertia or a response to selection (Edwards & Naeem

1993).

The corvids evolved in an environment of rain forest

(Feduccia 1995), but we found no support for that shifts

in breeding system were correlated to an expansion of the

distribution into more open habitats. Apart from entering

more open habitats the corvids encountered seasonal

environments with low ambient temperatures and short

days in winter at the expansion of their range onto the

Northern Hemisphere. While the offspring may delay

dispersal for lack of independent breeding opportunities in

a saturated environment (Brown 1969; Komdeur 1992),

food-limited survival during temperate and boreal region

winters (Jansson et al. 1981; Brittingham & Temple 1988)

may reduce numbers to an extent that will lift constraints

on independent breeding and dispersal (Verbeek 1973;

Brown 1974). This can, however, not be the full

explanation for the paucity of cooperative breeding,

while there is a non-breeding surplus in many Northern

Hemisphere populations and still the offspring do not

postpone dispersal (Brown 1969). A non-random seasonal

timing of natal dispersal on the Northern Hemisphere,

where the offspring in species without delayed dispersal

almost invariably leave before the energetically challenging

winter (Russell et al. 2004), rather indicates avoidance of

within-family competition driving the offspring to leave

thus precluding delayed dispersal. Indeed, when dispersal

is delayed it is also associated with relaxed aggression

within families as seen in that parents share food with

retained offspring in winter, while they deny unrelated

group members such unhindered access to food (Scott

1981; Barkan et al. 1986; Ekman et al. 1994; Pravosudova

et al. 2000; Dickinson & McGowan 2005). Such a joint

one-way effect of adverse climatic conditions on
1–10
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population saturation and parent behaviour would explain

why cooperatively breeding corvids responded with loss of

family cohesion (and hence alloparental care) to relaxed

population pressure coupled to within-family competition

in temperate and boreal climates, while the same

condition would have allowed non-cooperative taxa to

retain their ancestral breeding system of unassisted pair-

breeding in the absence of family cohesion.
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APPENDIX A. Information on social behaviour.

genus/species

Dendrocitta formosae Ali & Ripley (1972)

Pyrrhocorax pyrrhocorax Holyoak (1972)

Urocissa erythrorhyncha Severinghaus (1987)

Cissa chinensis Ali & Ripley (1972)

Perisoreus infaustus Ekman et al. (1994),

Lillandt et al. (2003)

Perisoreus internigrans Y.-H. Sun, personal
Q8

communication

Garrulus lidhti Bruce (1979)

Garrulus glandarius Cramp & Perrins (1994)

Pica pica Eden (1987)

Zavattariornis stresemanni Fry et al. (2000)

Ptilostomus afer C. Spottiswoode, personal
Q9

communication

Nucifraga caryocatactes Bent (1946), Rolando

(1996), Rolando & Caristo

(2003)

Corvus monedula Cramp & Perrins (1994)

Corvus corone (Spain) Baglione et al. (2002a)

Cyanopica cyana Hosono (1983), Canario

et al. (2004)

Cyanolyca viridicyanea Cockburn, personal
Q10

communication

Cyanolyca nana Hardy (1971)

Cyanocitta stelleri Brown (1963b)

Cyanocitta cristata Bent (1946)

Psilorhinus morio Skutch (1960)

Cyanocorax yncas Bent (1946); Gayou (1987)

Cyanocorax chrysops Brown (1974)

Aphelocoma californica Carmen (2004)

Aphelocoma coerulescens Woolfenden & Fitzpatrick

(1984)
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