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7.1 Introduction

210

What is the probability that Sweden will win next year’s world championships in
ice hockey? If you're a hockey fan, you probably already have a good idea, but even
if you couldn’t care less about the game, a quick perusal of the world championship
medalists the last 15 years (Table 7.1) would allow you to make an educated guess.
Clearly, Sweden is one of only a small number of teams that compete successfully
for the medals. Let’s assume that all seven medalists the last 15 years have the same
chance of winning, and that the probability of an outsider winning is negligible.
Then the odds of Sweden winning would be 1:7 or 0.14. We can also calculate
the frequency of Swedish victories in the past. Two gold medals in 15 years would
give us the number 2:15 or 0.13, very close to the previous estimate. The exact
probability is difficult to determine but most people would probably agree that it
is likely to be in the vicinity of these estimates.

You can use this information to make sensible decisions. If somebody offered you
to bet on Sweden winning the world championships at the odds 1:10, for instance,
you might not be interested because the return on the bet would be close to your
estimate of the probability. However, if you were offered the odds 1:100, you might
be tempted to go for it, wouldn’t you?

As the available information changes, you are likely to change your assessment
of the probabilities. Let’s assume, for instance, that the Swedish team made it to
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Table 7.1 Medalists in the ice hockey world championships 1993-2007

Year Gold Silver Bronze

1993 Russia Sweden Czech Republic
1994 Canada Finland Sweden

1995 Finland Sweden Canada

1996 Czech Republic Canada United States
1997 Canada Sweden Czech Republic
1998 Sweden Finland Czech Republic
1999 Czech Republic Finland Sweden

2000 Czech Republic Slovakia Finland

2001 Czech Republic Finland Sweden

2002 Slovakia Russia Sweden

2003 Canada Sweden Slovakia

2004 Canada Sweden United States
2005 Czech Republic Canada Russia

2006 Sweden Czech Republic Finland

2007 Canada Finland Russia

the finals. Now you would probably consider the chance of a Swedish victory to
be much higher than your initial guess, perhaps close to 0.5. If Sweden lost in the
semifinals, however, the chance of a Swedish victory would be gone; the probability
would be 0.

This way of reasoning about probabilities and updating them as new information
becomes available is intuitively appealing to most people and it is clearly related to
rational behavior. It also happens to exemplify the Bayesian approach to science.
Bayesian inference is just a mathematical formalization of a decision process that
most of us use without reflecting on it; it is nothing more than a probability analysis.
In that sense, Bayesian inference is much simpler than classical statistical methods,
which rely on sampling theory, asymptotic behavior, statistical significance, and
other esoteric concepts.

The first mathematical formulation of the Bayesian approach is attributed to
Thomas Bayes (c. 1702-1761), a British mathematician and Presbyterian minister.
He studied logic and theology at the University of Edinburgh; as a Non-Conformist,
Oxford and Cambridge were closed to him. The only scientific work he published
during his lifetime was a defense of Isaac Newton’s calculus against a contempo-
raneous critic (Introduction to the Doctrine of Fluxions, published anonymously in
1736), which apparently got him elected as a Fellow of the Royal Society in 1742.
However, it is his solution to a problem in so-called inverse probability that made
him famous. It was published posthumously in 1764 by his friend Richard Price in
the Essay Towards Solving a Problem in the Doctrine of Chances.
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Assume we have an urn with a large number of balls, some of which are white
and some of which are black. Given that we know the proportion of white balls,
what is the probability of drawing, say, five white and five black balls in ten draws?
This is a problem in forward probability. Thomas Bayes solved an example of the
converse of such problems. Given a particular sample of white and black balls,
what can we say about the proportion of white balls in the urn? This is the type of
question we need to answer in Bayesian inference.

Let’s assume that the proportion of white balls in the urn is p. The probability of
drawing a white ball is then p and the probability of drawing a black ball is 1 — p.
The probability of obtaining, say, two white balls and one black ball in three draws
would be

Pr(2white, 1black|p) = p x p x (1 — p) % (z) (7.1)

The vertical bar indicates a condition; in this case we are interested in the
probability of a particular outcome given (or conditional) on a particular value of
p- It is easy to forget the last factor (3 choose 2), which is the number of ways in
which we can obtain the given outcome. Two white balls and one black ball can
be the result of drawing the black ball in the first, second or third draw. That is,
there are three ways of obtaining the outcome of interest, 3 choose 2 (or 3 choose
1 if we focus on the choice of the black ball; the result is the same). Generally,
the probability of obtaining a white balls and b black balls is determined by the
function

b
b= - p(*+) -

which is the probability mass function (Box 7.1) of the so-called binomial distri-
bution. This is the solution to the problem in forward probability, when we know
the value of p. Bayesians often, somewhat inappropriately, refer to the forward
probability function as the likelihood function.

But given that we have a sample of a white balls and b black balls, what is the
probability of a particular value of p? This is the reverse probability problem, where
we are trying to find the function f(pl|a, b) instead of the function f(a, b|p). It
turns out that it is impossible to derive this function without specifying our prior
beliefs about the value of p. This is done in the form of a probability distribution on
the possible values of p (Box 7.1), the prior probability distribution or just prior
in everyday Bayesian jargon. If there is no previous information about the value
of p, we might associate all possible values with the same probability, a so-called
uniform probability distribution (Box 7.1).
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Box 7.1 Probability distributions

A function describing the probability of a discrete random variable is called a probability
mass function. For instance, this is the probability mass function for throwing a dice, an
example of a discrete uniform distribution:

0.25

o

1 2 3 4 5 6

For a continuous variable, the equivalent function is a probability density function.
The value of this function is not a probability, so it can sometimes be larger than one.
Probabilities are obtained by integrating the density function over a specified interval,
giving the probability of obtaining a value in that interval. For instance, a continuous
uniform distribution on the interval (0,2) has this probability density function:

1

0 2

Most prior probability distributions used in Bayesian phylogenetics are uniform,
exponential, gamma, beta or Dirichlet distributions. Uniform distributions are often
used to express the lack of prior information for parameters that have a uniform effect
on the likelihood in the absence of data. For instance, the discrete uniform distribution
is typically used for the topology parameter. In contrast, the likelihood is a negative
exponential function of the branch lengths, and therefore the exponential distribution is
a better choice for a vague prior on branch lengths. The exponential distribution has the
density function f(x) = Ae~**, where A is known as the rate parameter. The expectation
(mean) of the exponential distribution is 1/A.

2

The gamma distribution has two parameters, the shape parameter o and the scale
parameter 8. At small values of «, the distribution is L-shaped and the variance is large;
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Box 7.1 (cont)

at high values it is similar to a normal distribution and the variance is low. If there is
considerable uncertainty concerning the shape of the prior probability distribution, the
gamma may be a good choice; an example is the rate variation across sites. In these cases,
the value of @ can be associated with a uniform or an exponential prior (also known as
a hyperprior since it is a prior on a parameter of a prior), so that the MCMC procedure
can explore different shapes of the gamma distribution and weight each according to
its posterior probability. The sum of exponentially distributed variables is also a gamma
distribution. Therefore, the gamma is an appropriate choice for the prior on the tree
height of clock trees, which is the sum of several presumably exponentially distributed
branch lengths.

2

The beta and Dirichlet distributions are used for parameters describing proportions of
a whole, so called simplex parameters. Examples include the stationary state frequencies
that appear in the instantaneous rate matrix of the substitution model. The exchangeabil-
ity or rate parameters of the substitution model can also be understood as proportions of
the total exchange rate (given the stationary state frequencies). Another example is the pro-
portion of invariable and variable sites in the invariable sites model. The beta distribution,
denoted Beta(w;, o), describes the probability on two proportions, which are associated
with the weight parameters &; > 0 and «; > 0. The Dirichlet distribution is equivalent
except that there are more than two proportions and associated weight parameters.

A Beta(1, 1) distribution, also known as a flat beta, is equivalent to a uniform dis-
tribution on the interval (0,1). When «; = o, > 1, the distribution is symmetric and
emphasizes equal proportions, the more so the higher the weights. When oy = o, < 1,
the distribution puts more probability on extreme proportions than on equal proportions.
Finally, if the weights are different, the beta is skewed towards the proportion defined by
the weights; the expectation of the betais /(o + B) and the modeis (o« — 1)/(a + 8 — 2)
for > land 8 > 1.

4

Beta(0.5,0.5) Beta(10,10)

Beta(2,5)

Beta(1,1)
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Box 7.1 (cont)

Assume that we toss a coin to determine the probability p of obtaining heads. If we asso-
ciate pand 1 — p with aflat beta prior, we can show that the posterior is a beta distribution
where o; — 1 is the number of heads and &, — 1 is the number of tails. Thus, the weights
roughly correspond to counts. If we started with a flat Dirichlet distribution and analyzed
a set of DNA sequences with the composition 40 A, 50 C, 30 G, and 60 T, we might expect
a posterior for the stationary state frequencies around Dirichlet(41, 51, 31, 61) if it were
not for the other parameters in the model and the blurring effect resulting from looking
back in time. Wikipedia (http://www.wikipedia.org) is an excellent source for additional
information on common statistical distributions.

Thomas Bayes realized that the probability of a particular value of p, given
some sample (a, b) of white and black balls, can be obtained using the probability
function

_ J(p)f(a.blp)
f(pla,b) = fa D) (7.3)

This is known as Bayes’ theorem or Bayes’ rule. The function f(pla, b) is called
the posterior probability distribution, or simply the posterior, because it specifies
the probability of all values of p after the prior has been updated with the available
data.

We saw above how we can calculate f(a, b| p),and how we can specify f(p). How
do we calculate the probability f(a, b)? This is the unconditional probability of
obtaining the outcome (a, b) so it must take all possible values of p into account.
The solution is to integrate over all possible values of p, weighting each value
according to its prior probability:

1
f(a,b) = /O F(p) Fla, blp)dp (7.4)

We can now see that the denominator is a normalizing constant. It simply ensures
that the posterior probability distribution integrates to 1, the basic requirement of
a proper probability distribution.

A Bayesian problem that occupied several early workers was an analog to the
following. Given a particular sample of balls, what is the probability that p is larger
than a specified value? To solve it analytically, they needed to deal with complex
integrals. Bayes made some progress in his Essay; more important contributions
were made later by Laplace, who, among other things, used Bayesian reasoning
and novel integration methods to show beyond any reasonable doubt that the
probability of a newborn being a boy is higher than 0.5. However, the analytical
complexity of most Bayesian problems remained a serious problem for a long time
and it is only in the last few decades that the approach has become popular due to
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the combination of efficient numerical methods and the widespread availability of

fast computers.

7.2 Bayesian phylogenetic inference

How does Bayesian reasoning apply to phylogenetic inference? Assume we are
interested in the relationships between man, gorilla, and chimpanzee. In the stan-
dard case, we need an additional species to root the tree, and the orangutan would
be appropriate here. There are three possible ways of arranging these species in a
phylogenetic tree: the chimpanzee is our closest relative, the gorilla is our closest
relative, or the chimpanzee and the gorilla are each other’s closest relatives (Fig. 7.1).
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Fig. 7.1 A Bayesian phylogenetic analysis. We start the analysis by specifying our prior beliefs about
the tree. In the absence of background knowledge, we might associate the same probability
to each tree topology. We then collect data and use a stochastic evolutionary model and
Bayes' theorem to update the prior to a posterior probability distribution. If the data are
informative, most of the posterior probability will be focused on one tree (or a small subset

of trees in a large tree space).
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Before the analysis starts, we need to specify our prior beliefs about the rela-
tionships. In the absence of background data, a simple solution would be to assign
equal probability to the possible trees. Since there are three trees, the probability of
each would be one-third. Such a prior probability distribution is known as a vague
or uninformative prior because it is appropriate for the situation when we do not
have any prior knowledge or do not want to build our analysis on any previous
results.

To update the prior we need some data, typically in the form of a molecular
sequence alignment, and a stochastic model of the process generating the data on
the tree. In principle, Bayes’ rule is then used to obtain the posterior probability
distribution (Fig. 7.1), which is the result of the analysis. The posterior specifies
the probability of each tree given the model, the prior, and the data. When the data
are informative, most of the posterior probability is typically concentrated on one
tree (or a small subset of trees in a large tree space).

If the analysis is performed correctly, there is nothing controversial about the
posterior probabilities. Nevertheless, the interpretation of them is often subject to
considerable discussion, particularly in the light of alternative models and priors.

To describe the analysis mathematically, designate the matrix of aligned
sequences X. The vector of model parameters is contained in 6 (we do not dis-
tinguish in our notation between vector parameters and scalar parameters). In the
ideal case, this vector would only include a topology parameter t, which could
take on the three possible values discussed above. However, this is not sufficient to
calculate the probability of the data. Minimally, we also need branch lengths on the
tree; collect these in the vector v. Typically, there are also some substitution model
parameters to be considered but, for now, let us use the Jukes Cantor substitution
model (see below), which does not have any free parameters. Thus, in our case,
0 = (7, v).

Bayes’ theorem allows us to derive the posterior distribution as

f(0) f(X10)

X (7.5)

fO1X) =

The denominator is an integral over the parameter values, which evaluates to
a summation over discrete topologies and a multidimensional integration over
possible branch length values:

FX) = f £(0) F(X10) do (7.6)
= Z/ f(v) f(X|t,v)dv (7.7)
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Posterior probability distribution for our phylogenetic analysis. The x-axis is an imaginary
one-dimensional representation of the parameter space. It falls into three different regions
corresponding to the three different topologies. Within each region, a point along the axis
corresponds to a particular set of branch lengths on that topology. It is difficult to arrange
the space such that optimal branch length combinations for different topologies are close
to each other. Therefore, the posterior distribution is multimodal. The area under the curve
falling in each tree topology region is the posterior probability of that tree topology.

Even though our model is as simple as phylogenetic models come, it is impossible
to portray its parameter space accurately in one dimension. However, imagine for a
while that we could do just that. Then the parameter axis might have three distinct
regions corresponding to the three different tree topologies (Fig. 7.2). Within each
region, the different points on the axis would represent different branch length
values. The one-dimensional parameter axis allows us to obtain a picture of the
posterior probability function or surface. It would presumably have three distinct
peaks, each corresponding to an optimal combination of topology and branch
lengths.

To calculate the posterior probability of the topologies, we integrate out the
model parameters that are not of interest, the branch lengths in our case. This
corresponds to determining the area under the curve in each of the three topology
regions. A Bayesian would say that we are marginalizing or deriving the marginal
probability distribution on topologies.

Why is it called marginalizing? Imagine that we represent the parameter space
in a two-dimensional table instead of along a single axis (Fig. 7.3). The columns in
this table might represent different topologies and the rows different branch length
values. Since the branch lengths are continuous parameters, there would actually
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A two-dimensional table representation of parameter space. The columns represent dif-
ferent tree topologies, the rows represent different branch length bins. Each cell in the
table represents the joint probability of a particular combination of branch lengths and
topology. If we summarize the probabilities along the margins of the table, we get the
marginal probabilities for the topologies (bottom row) and for the branch length bins
(last column).

be an infinite number of rows, but imagine that we sorted the possible branch
length values into discrete bins, so that we get a finite number of rows. For instance,
if we considered only short and long branches, one bin would have all branches
long, another would have the terminal branches long and the interior branch
short, etc.

Now, assume that we can derive the posterior probability that falls in each of
the cells in the table. These are joint probabilities because they represent the joint
probability of a particular topology and a particular set of branch lengths. If we
summarized all joint probabilities along one axis of the table, we would obtain the
marginal probabilities for the corresponding parameter. To obtain the marginal
probabilities for the topologies, for instance, we would summarize the entries in
each column. It is traditional to write the sums in the margin of the table, hence
the term marginal probability (Fig. 7.3).

It would also be possible to summarize the probabilities in each row of the table.
This would give us the marginal probabilities for the branch length combinations
(Fig. 7.3). Typically, this distribution is of no particular interest but the possibility
of calculating it illustrates an important property of Bayesian inference: there is no
sharp distinction between different types of model parameters. Once the posterior
probability distribution is obtained, we can derive any marginal distribution of
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interest. There is no need to decide on the parameters of interest before performing
the analysis.

7.3 Markov chain Monte Carlo sampling

In most cases, including virtually all phylogenetic problems, it is impossible to
derive the posterior probability distribution analytically. Even worse, we can’t
even estimate it by drawing random samples from it. The reason is that most
of the posterior probability is likely to be concentrated in a small part of a vast
parameter space. Even with a massive sampling effort, it is highly unlikely that we
would obtain enough samples from the interesting region(s) of the posterior. This
argument is particularly easy to appreciate in the phylogenetic context because
of the large number of tree topologies that are possible even for small numbers
of taxa. Already at nine taxa, you are more likely to be hit by lightening (odds
3:100000) than to find the best tree by picking one randomly (odds 1:135,135).
At slightly more than 50 taxa, the number of topologies outnumber the number
of atoms in the known universe — and this is still considered a small phylogenetic
problem.

The solution is to estimate the posterior probability distribution using Markov
chain Monte Carlo sampling, or MCMC for short. Markov chains have the prop-
erty that they converge towards an equilibrium state regardless of starting point.
We just need to set up a Markov chain that converges onto our posterior probabil-
ity distribution, which turns out to be surprisingly easy. It can be achieved using
several different methods, the most flexible of which is known as the Metropo-
lis algorithm, originally described by a group of famous physicists involved in
the Manhattan project (Metropolis et al., 1953). Hastings (1970) later introduced
a simple but important extension, and the sampler is often referred to as the
Metropolis—Hastings method.

The central idea is to make small random changes to some current parameter
values, and then accept or reject those changes according to the appropriate proba-
bilities. We start the chain at an arbitrary point € in the landscape (Fig. 7.4). In the
next generation of the chain, we consider a new point 8* drawn from a proposal
distribution f(6*|0). We then calculate the ratio of the posterior probabilities at
the two points. There are two possibilities. Either the new point is uphill, in which
case we always accept it as the starting point for the next cycle in the chain, or it
is downhill, in which case we accept it with a probability that is proportional to
the height ratio. In reality, it is slightly more complicated because we need to take
asymmetries in the proposal distribution into account as well. Formally, we accept

13:25
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The Markov chain Monte Carlo (MCMC) procedure is used to generate a valid sample
from the posterior. One first sets up a Markov chain that has the posterior as its stationary
distribution. The chain is then started at a random point and run until it converges onto this
distribution. In each step (generation) of the chain, a small change is made to the current
values of the model parameters (step 2). The ratio r of the posterior probability of the new
and current states is then calculated. If r > 1, we are moving uphill and the move is always
accepted (3a). If r < 1, we are moving downhill and accept the new state with probability
r (3b).

or reject the proposed value with the probability

r = min (1 f(9*|X) X f<9|9*)>

Cf1X) T f(6*16)
(RO FXI0M () f(9|9*)>
_mm(l’ @) FX0)/ (%) 670
(6t F(XI6%) f(6160)
= min (1’ @ = Fxie) < f(9*|9)>

(7.8)

(7.9)

(7.10)

The three ratios in the last equation are referred to as the prior ratio, the likelihood
ratio, and the proposal ratio (or Hastings ratio), respectively. The first two ratios
correspond to the ratio of the numerators in Bayes’ theorem; note that the complex
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integral in the denominator of Bayes’ theorem, f(X), cancels out in the second
step because it is the same for both the current and the proposed states. Because of
this, r is easy to compute.

The Metropolis sampler works because the relative equilibrium frequencies of
the two states 6 and 6* is determined by the ratio of the rates at which the chain
moves back and forth between them. Equation (7.10) ensures that this ratio is the
same as the ratio of their posterior probabilities. This means that, if the Markov
chain is allowed to run for a sufficient number of generations, the amount of time it
spends sampling a particular parameter value or parameter interval is proportional
to the posterior probability of that value or interval. For instance, if the posterior
probability of a topology is 0.68, then the chain should spend 68% of its time
sampling that topology at stationarity. Similarly, if the posterior probability of
a branch length being in the interval (0.02, 0.04) is 0.11, then 11% of the chain
samples at stationarity should be in that interval.

For alarge and parameter-rich model, a mixture of different Metropolis samplers
is typically used. Each sampler targets one parameter or a set of related parameters
(Box 7.2). One can either cycle through the samplers systematically or choose
among them randomly according to some proposal probabilities (MRBAYEs does
the latter).

Box 7.2 Proposal mechanisms

Four types of proposal mechanisms are commonly used to change continuous variables.
The simplest is the sliding window proposal. A continuous uniform distribution of width
w is centered on the current value x, and the new value x* is drawn from this distribution.
The “window” width w is a tuning parameter. A larger value of w results in more radical
proposals and lower acceptance rates, while a smaller value leads to more modest changes
and higher acceptance rates.

|3

The normal proposal is similar to the sliding window except that it uses a normal
distribution centered on the current value x. The variance 0% of the normal distribution
determines how drastic the new proposals are and how often they will be accepted.
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Box 7.2 (cont)

26

<X

Both the sliding window and normal proposals can be problematic when the effect on
the likelihood varies over the parameter range. For instance, changing a branch length
from 0.01 to 0.03 is likely to have a dramatic effect on the posterior but changing it
from 0.51 to 0.53 will hardly be noticeable. In such situations, the multiplier proposal
is appropriate. It is equivalent to a sliding window with width A on the log scale of the
parameter. A random number u is drawn from a uniform distribution on the interval
(—0.5, 0.5) and the proposed value is x* = mx, where m = e**. If the value of A takes
the form 2 In a, one will pick multipliers m in the interval (1/4, a).

The beta and Dirichlet proposals are used for simplex parameters. They pick new
values from a beta or Dirichlet distribution centered on the current values of the simplex.
Assume that the current values are (x;, x;). We then multiply them with a value o, which
is a tuning parameter, and pick new values from the distribution Beta(ox;, @x;). The
higher the value of «, the closer the proposed values will be to the current values.

10
Beta(70,30)
(0. =100)
Beta(7,3)
(oe=10)
0
0 x=(0.7,0.3) 1

More complex moves are needed to change topology. A common type uses stochastic
branch rearrangements (see Chapter 8). For instance, the extending subtree pruning
and regrafting (extending SPR) move chooses a subtree at random and then moves
its attachment point, one branch at a time, until a random number u drawn from a
uniform on (0, 1) becomes higher than a specified extension probability p. The extension
probability pisa tuning parameter; the higher the value, the more drastic rearrangements
will be proposed.

13:25
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The likelihood values typically increase very rapidly during the initial phase of the run
because the starting point is far away from the regions in parameter space with high
posterior probability. This initial phase of the Markov chain is known as the burn in. The
burn-in samples are typically discarded because they are so heavily influenced by the starting
point. As the chain converges onto the target distribution, the likelihood values tend to reach
a plateau. This phase of the chain is sampled with some thinning, primarily to save disk
space.

7.4 Burn-in, mixing and convergence

If the chain is started from a random tree and arbitrarily chosen branch lengths,
chances are that the initial likelihood is low. As the chain moves towards the regions
in the posterior with high probability mass, the likelihood typically increases very
rapidly; in fact, it almost always changes so rapidly that it is necessary to measure
it on a log scale (Fig. 7.5). This early phase of the run is known as the burn in, and
the burn-in samples are often discarded because they are so heavily influenced by
the starting point.

As the chain approaches its stationary distribution, the likelihood values tend to
reach a plateau. This is the first sign that the chain may have converged onto the
target distribution. Therefore, the plot of the likelihood values against the gener-
ation of the chain, known as the trace plot (Fig. 7.5), is important in monitoring
the performance of an MCMC run. However, it is extremely important to confirm
convergence using other diagnostic tools because it is not sufficient for the chain to
reach the region of high probability in the posterior, it must also cover this region
adequately. The speed with which the chain covers the interesting regions of the
posterior is known as its mixing behavior. The better the mixing, the faster the
chain will generate an adequate sample of the posterior.
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The time it takes for a Markov chain to obtain an adequate sample of the posterior depends
critically on its mixing behavior, which can be controlled to some extent by the proposal
tuning parameters. If the proposed values are very close to the current ones, all proposed
changes are accepted but it takes a long time for the chain to cover the posterior; mixing is
poor. If the proposed values tend to be dramatically different from the current ones, most
proposals are rejected and the chain will remain on the same value for a long time, again
leading to poor mixing. The best mixing is obtained at intermediate values of the tuning
parameters, associated with moderate acceptance rates.

The mixing behavior of a Metropolis sampler can be adjusted using its tuning
parameter(s). Assume, for instance, that we are sampling from a normal distribu-
tion using a sliding window proposal (Fig. 7.6). The sliding window proposal has
one tuning parameter, the width of the window. If the width is too small, then the
proposed value will be very similar to the current one (Fig. 7.6a). The posterior
probabilities will also be very similar, so the proposal will tend to be accepted. But
each proposal will only move the chain a tiny distance in parameter space, so it will
take the chain a long time to cover the entire region of interest; mixing is poor.
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A window that is too wide also results in poor mixing. Under these conditions,
the proposed state is almost always very different from the current state. If we
have reached a region of high posterior probability density, then the proposed
state is also likely to have much lower probability than the current state. The new
state will therefore often be rejected, and the chain remains in the same spot for
a long time (Fig. 7.6b), resulting in poor mixing. The most efficient sampling of
the target distribution is obtained at intermediate acceptance rates, associated with
intermediate values of the tuning parameter (Fig. 7.6¢).

Extreme acceptance rates thus indicate that sampling efficiency can be improved
by adjusting proposal tuning parameters. Studies of several types of complex but
unimodal posterior distributions indicate that the optimal acceptance rate is 0.44
for one-dimensional and 0.23 for multi-dimensional proposals (Roberts et al., 1997;
Roberts & Rosenthal, 1998, 2001). However, multimodal posteriors are likely to
have even lower optimal acceptance rates. Adjusting the tuning parameter values to
reach a target acceptance rate can be done manually or automatically using adaptive
tuning methods (Roberts & Rosenthal, 2006). Bear in mind, however, that some
samplers used in Bayesian MCMC phylogenetics have acceptance rates that will
remain low, no matter how much you tweak the tuning parameters. In particular,
this is true for many tree topology update mechanisms.

Convergence diagnostics help determine the quality of a sample from the poste-
rior. There are essentially three different types of diagnostics that are currently in
use: (1) examining autocorrelation times, effective sample sizes, and other mea-
sures of the behavior of single chains; (2) comparing samples from successive time
segments of a single chain; and (3) comparing samples from different runs. The
last approach is arguably the most powerful way of detecting convergence prob-
lems. The drawback is that it wastes computational power by generating several
independent sets of burn-in samples that must be discarded.

In Bayesian MCMC sampling of phylogenetic problems, the tree topology is
typically the most difficult parameter to sample from. Therefore, it makes sense
to focus our attention on this parameter when monitoring convergence. If we
start several parallel MCMC runs from different, randomly chosen trees, they
will initially sample from very different regions of tree space. As they approach
stationarity, however, the tree samples will become more and more similar. Thus,
an intuitively appealing convergence diagnostic is to compare the variance among
and within tree samples from different runs.

Perhaps the most obvious way of achieving this is to compare the frequencies
of the sampled trees. However, this is not practical unless most of the posterior
probability falls on a small number of trees. In large phylogenetic problems, there
is often an inordinate number of trees with similar probabilities and it may be
extremely difficult to estimate the probability of each accurately.
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The approach that we and others have taken to solve this problem is to focus
on split (clade) frequencies instead. A split is a partition of the tips of the tree into
two non-overlapping sets; each branch in a tree corresponds to exactly one such
split. For instance, the split ((human, chimp),(gorilla, orangutan)) corresponds to
the branch uniting the human and the chimp in a tree rooted on the orangutan.
Typically, a fair number of splits are present in high frequency among the sampled
trees. In a way, the dominant splits (present in, say, more than 10% of the trees)
represent an efficient diagnostic summary of the tree sample as a whole. If two tree
samples are similar, the split frequencies should be similar as well. To arrive at an
overall measure of the similarity of two or more tree samples, we simply calculate
the average standard deviation of the split frequencies. As the tree samples become
more similar, this value should approach zero.

Most other parameters in phylogenetic models are continuous scalar parameters.
An appropriate convergence diagnostic for these is the Potential Scale Reduction
Factor (PSRF) originally proposed by Gelman and Rubin (1992). The PSRF com-
pares the variance among runs with the variance within runs. If chains are started
from over-dispersed starting points, the variance among runs will initially be higher
than the variance within runs. As the chains converge, however, the variances will
become more similar and the PSRF will approach 1.0.

7.5 Metropolis coupling

For some phylogenetic problems, it may be difficult or impossible to achieve con-
vergence within a reasonable number of generations using the standard approach.
Often, this seems to be due to the existence of isolated peaks in tree space (also
known as tree islands) with deep valleys in-between. In these situations, individual
chains may get stuck on different peaks and have difficulties moving to other peaks
of similar probability mass. As a consequence, tree samples from independent
runs tend to be different. A topology convergence diagnostic, such as the standard
deviation of split frequencies, will indicate that there is a problem. But are there
methods that can help us circumvent it?

A general technique that can improve mixing, and hence convergence, in
these cases is Metropolis Coupling, also known as MCMCMC or (MC)? (Geyer,
1991). The idea is to introduce a series of Markov chains that sample from a
heated posterior probability distribution (Fig. 7.7). The heating is achieved by rais-
ing the posterior probability to a power smaller than 1. The effect is to flatten out
the posterior probability surface, very much like melting a landscape of wax.

Because the surface is flattened, a Markov chain will move more readily between
the peaks. Of course, the heated chains have a target distribution that is different
from the one we are interested in, sampled by the cold chain, but we can use them
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Fig. 7.7 Metropolis Coupling uses one or more heated chains to accelerate mixing in the so called

cold chain sampling from the posterior distribution. The heated chains are flattened out
versions of the posterior, obtained by raising the posterior probability to a power smaller
than one. The heated chains can move more readily between peaks in the landscape
because the valleys between peaks are shallower. At regular intervals, one attempts to
swap the states between chains. If a swap is accepted, the cold chain can jump between
isolated peaks in the posterior in a single step, accelerating its mixing over complex posterior
distributions.

to generate proposals for the cold chain. With regular intervals, we attempt to swap
the states between two randomly picked chains. If the cold chain is one of them, and
the swap is accepted, the cold chain can jump considerable distances in parameter
space in a single step. In the ideal case, the swap takes the cold chain from one tree
island to another. At the end of the run, we simply discard all of the samples from
the heated chains and keep only the samples from the cold chain.

In practice, an incremental heating scheme is often used where chain i has its
posterior probability raised by the temperature factor

(7.11)

where i € {0, 1, ..., k} for k heated chains, with i = 0 for the cold chain, and A
is the temperature factor. The higher the value of A, the larger the temperature
difference between adjacent chains in the incrementally heated sequence.

If we apply too much heat, then the chains moving in the heated landscapes will
walk all over the place and are less likely to be on an interesting peak when we try
to swap states with the cold chain. Most of the swaps will therefore be rejected and
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the heating does not accelerate mixing in the cold chain. On the other hand, if we
do not heat enough, then the chains will be very similar, and the heated chain will
not mix more rapidly than the cold chain. As with the proposal tuning parameters,
an intermediate value of the heating parameter A works best.

7.6 Summarizing the results

The stationary phase of the chain is typically sampled with some thinning, for
instance every 50th or 100th generation. This is done primarily to save disk space,
since an MCMC run can easily generate millions of samples. Once an adequate
sample is obtained, it is usually trivial to compute an estimate of the marginal
posterior distribution for the parameter(s) of interest. For instance, this can take
the form of a frequency histogram of the sampled values. When it is difficult to
visualize this distribution or when space does not permit it, various summary
statistics are used instead.

Most phylogenetic model parameters are continuous variables and their esti-
mated posterior distribution is summarized using statistics such as the mean, the
median, and the variance. Bayesian statisticians typically also give the 95% cred-
ibility interval, which is obtained by simply removing the lowest 2.5% and the
highest 2.5% of the sampled values. The credibility interval is somewhat similar to
a confidence interval but the interpretation is different. A 95% credibility interval
actually contains the true value with probability 0.95 (given the model, prior, and
data) unlike the confidence interval, which has a more complex interpretation.

The posterior distribution on topologies and branch lengths is more difficult to
summarize efficiently. If there are few topologies with high posterior probability,
one can produce a list of the best topologies and their probabilities, or simply give
the topology with the maximum posterior probability. However, most posteriors
contain too many topologies with reasonably high probabilities, and one is forced
to use other methods.

One way to illustrate the topological variance in the posterior is to list the
topologies in order of decreasing probabilities and then calculate the cumulative
probabilities so that we can give the estimated number of topologies in various
credible sets. Assume, for instance, that the five best topologies have the esti-
mated probabilities (0.35, 0.25, 0.20, 0.15, 0.03), giving the cumulative probabili-
ties (0.35, 0.60, 0.80, 0.95, 0.98). Then the 50% credible set has two topologies in
it, the 90% and the 95% credible sets both have four trees in them, etc. We simply
pass down the list and count the number of topologies we need to include before
the target probability is met or superseded. When these credible sets are large,
however, it is difficult to estimate their sizes precisely.
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The most common approach to summarizing topology posteriors is to give the
frequencies of the most common splits, since there are much fewer splits than
topologies. Furthermore, all splits occurring in at least 50% of the sampled trees
are guaranteed to be compatible and can be visualized in the same tree, a major-
ity rule consensus tree. However, although the split frequencies are convenient,
they do have limitations. For instance, assume that the splits ((A,B),(C,D,E)) and
((A,B,C),(D,E)) were both encountered in 70% of the sampled trees. This could
mean that 30% of the sampled trees contained neither split or, at the other extreme,
that all sampled trees contained at least one of them. The split frequencies them-
selves only allow us to approximately reconstruct the underlying set of topologies.

The sampled branch lengths are even more difficult to summarize adequately.
Perhaps the best way would be to display the distribution of sampled branch
length values separately for each topology. However, if there are many sampled
topologies, there may not be enough branch length samples for each. A reasonable
approach, taken by MRBAYEs, is then to pool the branch length samples that
correspond to the same split. These pooled branch lengths can also be displayed on
the consensus tree. However, one should bear in mind that the pooled distributions
may be multimodal since the sampled values in most cases come from different
topologies, and a simple summary statistic like the mean might be misleading.

A special difficulty appears with branch lengths in clock trees. Clock trees are
rooted trees in which branch lengths are proportional to time units (see Chapter 11).
Even if computed from a sample of clock trees, a majority rule consensus tree with
mean pooled branch lengths is not necessarily itself a clock tree. This problem is
easily circumvented by instead using mean pooled node depths instead of branch
lengths (for Bayesian inference of clock trees, see also Chapter 18).

7.7 An Introduction to phylogenetic models

A phylogenetic model can be divided into two distinct parts: a tree model and a sub-
stitution model. The tree model we have discussed so far is the one most commonly
used in phylogenetic inference today (sometimes referred to as the different-rates
or unrooted model, see Chapter 11). Branch lengths are measured in amounts
of expected evolutionary change per site, and we do not assume any correlation
between branch lengths and time units. Under time-reversible substitution models,
the likelihood is unaffected by the position of the root, that is, the tree is unrooted.
For presentation purposes, unrooted trees are typically rooted between a specially
designated reference sequence or group of reference sequences, the outgroup, and
the rest of the sequences.

Alternatives to the standard tree model include the strict and relaxed clock
tree models. Both of these are based on trees, whose branch lengths are strictly
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proportional to time. In strict clock models, the evolutionary rate is assumed to
be constant so that the amount of evolutionary change on a branch is directly
proportional to its time duration, whereas relaxed clock models include a model
component that accommodates some variation in the rate of evolution across the
tree. Various prior probability models can be attached to clock trees. Common
examples include the uniform model, the birth-death process, and the coalescent
process (for the latter two, see Chapter 18).

The substitution process is typically modeled using Markov chains of the same
type used in MCMC sampling. For instance, they have the same tendency towards
an equilibrium state. The different substitution models are most easily described in
terms of their instantaneous rate matrices, or Q matrices. For instance, the general
time-reversible model (GTR) is described by the rate matrix

- TTcraCc  TTGYAG  TUTTAT
TATAC - TGreGg TTrCr
TATAG TCTCG - TTrGT
TTATAT TTcrcr  TTGTGT -

Each row in this matrix gives the instantaneous rate of going from a particular
state, and each column represents the rate of going to a particular state; the states
are listed in alphabetical sequence A, C, G, T. For instance, the second entry in the
first row represents the rate of going from A to C. Each rate is composed of two
factors; for instance, the rate of going from A to C is a product of ¢ and rac. The
rates along the diagonal are commonly omitted since their expressions are slightly
more complicated. However, they are easily calculated since the rates in each row
always sum to zero. For instance, the instantaneous rate of going from A to A (first
entry in the first row) is —wcrac — mgrag — TrraT-

It turns out that, if we run this particular Markov chain for a long time, it
will move towards an equilibrium, where the frequency of a state i is determined
exactly by the factor 7r; given that ) 7; = 1. Thus, the first rate factor corresponds
to the stationary state frequency of the receiving state. The second factor, r;j, is a
parameter that determines the intensity of the exchange between pairs of states,
controlling for the stationary state frequencies. For instance, at equilibrium we
will have 75 sites in state A and 7¢ sites in state C. The total instantaneous rate
of going from A to C over the sequence is then 4 times the instantaneous rate
of the transition from A to C, which is w¢rac, resulting in a total rate of A to C
changes over the sequence of mamcrac. This is the same as the total rate of the
reverse changes over the sequence, which is wcmwarac. Thus, there is no net change
of the state proportions, which is the definition of an equilibrium, and the factor
rac determines how intense the exchange between A and C is compared with the
exchange between other pairs of states.
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Many of the commonly used substitution models are special cases or extensions
of the GTR model. For instance, the Jukes Cantor model has all rates equal, and
the Felsenstein 81 (F81) model has all exchangeability parameters (r;;) equal. The
covarion and covariotide models have an independent on—off switch for each
site, leading to a composite instantaneous rate matrix including four smaller rate
matrices: two matrices describing the switching process, one being a zero-rate
matrix, and the last describing the normal substitution process in the on state.

In addition to modeling the substitution process at each site, phylogenetic models
typically also accommodate rate variation across sites. The standard approach is
to assume that rates vary according to a gamma distribution (Box 7.1) with mean
1. This results in a distribution with a single parameter, typically designated «,
describing the shape of the rate variation (see Fig. 4.8 in Chapter 4). Small values
of o correspond to large amounts of rate variation; as o approaches infinity, the
model approaches rate constancy across sites. It is computationally expensive to let
the MCMC chain integrate over a continuous gamma distribution of site rates, or
to numerically integrate out the gamma distribution in each step of the chain. The
standard solution is to integrate out the gamma using a discrete approximation
with a small number of rate categories, typically four to eight, which is a reasonable
compromise. An alternative is to use MCMC sampling over discrete rate categories.

Many other models of rate variation are also possible. A commonly considered
model assumes that there is a proportion of invariable sites, which do not change
at all over the course of evolution. This is often combined with an assumption of
gamma-distributed rate variation in the variable sites.

It is beyond the scope of this chapter to give a more detailed discussion of
phylogenetic models but we present an overview of the models implemented in
MRrBAYEs 3.2, with the command options needed to invoke them (Fig. 7.8). The
MRrBAYEs manual provides more details and references to the different mod-
els. A simulation-based presentation of Markov substitution models is given in
(Huelsenbeck & Ronquist, 2005) and further details can be found in Chapter 4 and
Chapter 10.

7.8 Bayesian model choice and model averaging

So far, our notation has implicitly assumed that Bayes’s theorem is conditioned on
a particular model. To make it explicit, we could write Bayes’s theorem:

fO1M) f(X]|6, M)
f(XIM)

FO1X, M) = (7.12)

It is now clear that the normalizing constant, f(X|M), is the probability of
the data given the chosen model after we have integrated out all parameters. This
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Models supported by MrBayes 3 (simplified)

State frequencies Across-site

Coding bias Misc.
Datatype (substitution rates) rate variation 9
Restriction Fixed/estimated (Dirichlet) Equal/gamma All{variable/ .
0-1 — prset statefreqpr 1 lsetrates || N° presencesnes/n.o absencesites
Iset coding
Standard | | Equal/estimated (SymmDir) | | Equal/gamma | | All/variable/informative | | Unordered/ordered
0-9 prset symdirihyperpr Iset rates Iset coding ctype
Data type Model type State frequencies  Substitution rates Across.-5|.t N Across: trfee
rate variation rate variation
DNA 4by4 Fixed/est. (Dirichlet) F81/HKY/GTR Equal/gamma/ Yes/no
ACGT Iset nucmodel| |  prset statefreqpr || Iset nst=1/2/6 propinv/invgamma/ [ | Iset covarion
adgamma
Iset rates
Doublet Fixed/est. (Dirichlet) F81/HKY/GTR Equal/gamma/
Isetnucmodel|[ | (over16states) [ | Isetnst=1/2/6 propinv/invgamma
prset statefreqpr Iset rates
Across-site
omega variation
Codon Fixed/est. (Dirichlet) F81/HKY/GTR Equal/Ny98/M3
Isetnucmodel| | (over61states) [ | Isetnst=1/2/6 Iset omegavar
prset statefreqpr
Fig. 7.8 Schematic overview of the models implemented in MrBaves 3. Each box gives the available

settings in normal font and then the program commands and command options needed to
invoke those settings in italics.

quantity, known as the model likelihood, is used for Bayesian model comparison.
Assume we are choosing between two models, My and M;, and that we assign them
the prior probabilities f(M;) and f(M;). We could then calculate the ratio of their
posterior probabilities (the posterior odds) as

f(My| X) _ F(My) f(X| M) _ f(My) y F(XI Mp)
fM|X)  f(M) f(XIMy)  f(My)  f(XIM)

(7.13)

Thus, the posterior odds is obtained as the prior odds, f(M,)/f(M;), times a
factor known as the Bayes factor, By, = f(X|M,)/f(X|M,), which is the ratio
of the model likelihoods. Rather than trying to specify the prior model odds, it is
common to focus entirely on the Bayes factor. One way to understand the Bayes
factor is that it determines how much the prior model odds are changed by the
data when calculating the posterior odds. The Bayes factor is also the same as
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(b) Models supported by MrBayes 3 (simplified) page 2
. e e Across-site Across-tree
Data type Model type State frequencies  Substitution rates rate variation rate variation
Protein Equalin/GTR || Fixed/est. (Dirichlet) || Fixed/est. (Dirichlet) | | Equal/gamma/ Yes/no
A-Y prset aamodelpr prset statefreqpr prset aarevmatpr propinv/invgamma/ Iset covarion
adgamma
Poisson/Jones/ Iset rates
Dayhoff/Mtrev/
Mtmam/Wag/ eq.ual/.gamma/ -
Rtrev/Cprev/Vt/ ) . N N propinv/invgamma/ L yes, no'
Blossur‘rﬁ)/mixed —| F|xed/m|xed|—|F|xed/m|xed |— adgamma Iset covarion
prset aamodelpr Iset rates

Parameter variation across partitions

Shared/separate Inferring site parameters
Topology models Brlens type set partition, link, unlink ancstates/possel/siteomega/siterate
Unconstrained/ Fixed report
constraints/fixed prset brlenspr .
constraint Brlens prior Additional
prset topologypr Unconstrained Exponential/Uniform parameters Clockrate variation
prset brlenspr prset brlenspr see pr.set ) strict/cppm/
(Iset for diploidy) cppi/bm
Clock Uniform —| Treeheight prset clockratepr
prset brlenspr prset brlenspr —— I
Theta, Diploidy Dating constraints
Coalescence Growth Unconstrained/
prset brlenspr Speciation calibrated
- Extinction calibrate
Birth-Death Treeheight prset nodeagepr
prset brlenspr Sampleprob prset treeagepr
Fig. 7.8 (cont)

the posterior odds when the prior odds are 1, that is, when we assign equal prior
probabilities to the compared models.

Bayes factor comparisons are truly flexible. Unlike likelihood ratio tests, there
is no requirement for the models to be nested. Furthermore, there is no need to
correct for the number of parameters in the model, in contrast to comparisons
based on the Akaike Information Criterion (Akaike, 1974) or the confusingly
named Bayesian Information Criterion (Schwarz, 1978). Although it is true that
a more parameter-rich model always has a higher maximum likelihood than a
nested submodel, its model likelihood need not be higher. The reason is that a
more parameter-rich model also has a larger parameter space and therefore a lower
prior probability density. This can lead to a lower model likelihood unless it is
compensated for by a sufficiently large increase in the likelihood values in the peak
region.

The interpretation of a Bayes factor comparison is up to the investigator but
some guidelines were suggested by Kass and Raftery (1995) (Table 7.2).
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Table 7.2 Critical values for Bayes factor comparisons

21n By; By Evidence against M;

0to?2 1to3 Not worth more than a bare mention
2to6 3t020 Positive

6to 10 20 to 150 Strong

>10 >150 Very strong

From Kass & Raftery (1995).

The easiest way of estimating the model likelihoods needed in the calculation of
Bayes factors is to use the harmonic mean of the likelihood values from the stationary
phase of an MCMC run (Newton & Raftery, 1994). Unfortunately, this estimator is
unstable because it is occasionally influenced by samples with very small likelihood
and therefore a large effect on the final result. A stable estimator can be obtained
by mixing in a small proportion of samples from the prior (Newton & Raftery,
1994). Even better accuracy, at the expense of computational complexity, can
be obtained by using thermodynamic integration methods (Lartillot & Philippe,
2006). Because of the instability of the harmonic mean estimator, it is good practice
to compare several independent runs and only rely on this estimator when the runs
give consistent results.

An alternative to running a full analysis on each model and then choosing
among them using the estimated model likelihoods and Bayes factors is to let a
single Bayesian analysis explore the models in a predefined model space (using
reversible-jump MCMC). In this case, all parameter estimates will be based on an
average across models, each model weighted according to its posterior probability.
For instance, MRBAYEs 3 uses this approach to explore a range of common fixed-
rate matrices for amino acid data (see practice in Chapter 9 for an exercise).

Different topologies can also be considered different models and, in that sense,
all Markov chains that integrate over the topology parameter also average across
models. Thus, we can use the posterior sample of topologies from a single run to
compare posterior probabilities of topology hypotheses.

For instance, assume that we want to test the hypothesis that group A is mono-
phyletic against the hypothesis that it is not, and that 80% of the sampled trees have
A monophyletic. Then the posterior model odds for A being monophyletic would
be 0.80/0.20 = 4.0. To obtain the Bayes factor, one would have to multiply this
with the inverse of the prior model odds (see (7.13)). If the prior assigned equal
prior probability to all possible topologies, then the prior model odds would be
determined by the number of trees consistent with each of the two hypothesis, a
ratio that is easy to calculate. If one class of trees is empty, a conservative estimate
of the Bayes factor would be obtained by adding one tree of this class to the sample.
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7.9 Prior probability distributions

We will end with a few cautionary notes about priors. Beginners often worry
excessively about the influence of the priors on their results and the subjectivity
that this introduces into the inference procedure. In most cases however, the exact
form of the priors (within rather generous bounds) has negligible influence on the
posterior distribution. If this is a concern, it can always be confirmed by varying
the prior assumptions.

The default priors used in MrRBAYEs are designed to be vague or uninformative
probability distributions on the model parameters. When the data contain little
information about some parameters, one would therefore expect the correspond-
ing posterior probability distributions to be diffuse. As long as we can sample
adequately from these distributions, which can be a problem if there are many of
them (Nylander et al., 2004), the results for other parameters should not suffer. We
also know from simulations that the Bayesian approach does well even when the
model is moderately overparameterized (Huelsenbeck & Rannala, 2004). Thus, the
Bayesian approach typically handles weak data quite well.

However, the parameter space of phylogenetic models is vast and occasionally
there are large regions with inferior but not extremely low likelihoods that attract the
chain when the data are weak. The characteristic symptom is that the sample from
the posterior is concentrated on parameter values that the investigator considers
unlikely or unreasonable, for instance in comparison with the maximum likelihood
estimates. We have seen a few examples involving models of rate variation applied
to very small numbers of variable sites. In these cases, one can either choose to
analyze the data under a simpler model (probably the best option in most cases)
or include background information into the priors to emphasize the likely regions
of parameter space.

13:25
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7.10 Introduction to MrBaves

The rest of this chapter is devoted to two tutorials that will get you started using
MRrBAYEs 3 (Huelsenbeck & Ronquist, 2001; Ronquist & Huelsenbeck, 2003).
For more help using the program, visit its website at http://www.mrbayes.net.
The program has a command-line interface and should run on a variety of com-
puter platforms, including clusters of Macintosh and UNIX computers. Note that
the computer should be reasonably fast and should have a lot of RAM memory
(depending on the size of the data matrix, the program may require hundreds of
megabytes of memory). The program is optimized for speed and not for minimiz-
ing memory requirements.

Throughout the tutorial text, we will use typewriter font for whatyou see
on the screen and what is in the input file. What you should type is given in bold font.

7.10.1 Acquiring and installing the program

237

MRrBAYESs 3is distributed without charge by download from the MrRBAYES website
(http://mrbayes.net). If someone has given you a copy of MRBAYEs 3, we strongly
suggest that you download the most recent version from this site. The site also
gives information about the MRBAYEs users’ email list and describes how you can
report bugs or contribute to the project.

MRBAYEs 3 is a plain-vanilla program that uses a command-line interface and
therefore behaves virtually the same on all platforms — Macintosh, Windows,
and Unix. There is a separate download package for each platform. The Macintosh
and Windows versions are ready to use after unzipping. If you decide to run the
program under Unix/Linux, or in the Unix environment on a Mac OS X com-
puter, then you will need to compile the program from the source code first. The
MRrBAaYEs website provides detailed instructions on how to do this.

In addition to the normal serial version, MRBAYEs 3 is also available in a parallel
version that uses MPI to distribute chains across two or more available processors.
You can use this version to run MRBAYES on a computer cluster or on a single
machine with several processors or processor cores available. See the MRBAYES
website for detailed instructions.

All three packages of MRBAYES come with example data files. These are intended
to show various types of analyses you can perform with the program, and you can
use them as templates for your own analyses. Two of the files, primates.nex
and cynmix . nex, will be used in the tutorials that follow.

13:25
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7.10.2 Getting started
Start MrBaYEs by double-clicking the application icon (or typing ./mb in the
Unix environment) and you will see the information below:

MrBayes 3.2.0
(Bayesian Analysis of Phylogeny)
by
John P. Huelsenbeck, Fredrik Ronquist, and Paul van der Mark

Section of Ecology, Behavior and Evolution
Division of Biological Sciences
University of California, San Diego
johnh@biomail.ucsd.edu

School of Computational Science
Florida State University
ronquist@scs.fsu.edu
paulvdm@scs. fsu.edu

Distributed under the GNU General Public License

Type ‘‘help’’ or ‘‘help <command>’’ for information

on the commands that are available.

MrBayes >

The order of the authors is randomized each time you start the program, so
don’t be surprised if the order differs from the one above. Note the MrBayes >
prompt at the bottom, which tells you that MrRBaYEs is ready for your commands.

7.10.3 Changing the size of the MrBayves window
Some MrBaYEs commands will output a lot of information and write fairly long
lines, so you may want to change the size of the MrRBaYEs window to make it
easier to read the output. On Macintosh and Unix machines, you should be able to
increase the window size simply by dragging the margins. On a Windows machine,
you cannot increase the size of the window beyond the preset value by simply
dragging the margins, but (on Windows XP, 2000 and NT) you can change both
the size of the screen buffer and the console window by right-clicking on the blue
title bar of the MrRBAYEs window and then selecting Properties in the menu that
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appears. Make sure the Layout tab is selected in the window that appears, and then
set the “Screen Buffer Size” and “Window Size” to the desired values.

7.10.4 Getting help
At the MrBayes > prompt, type help to see a list of the commands available
in . Most commands allow you to set values (options) for different parameters. If
you type help <command>, where <command> is any of the listed commands,
you will see the help information for that command as well as a description of
the available options. For most commands, you will also see a list of the current
settings at the end. Try, for instance, help Iset or help mcmc. The Iset settings table

looks like this:
Parameter Options Current Setting
Nucmodel 4by4/Doublet/Codon 4by4
Nst 1/2/6 1
Code Universal/Vertmt/Mycoplasma/
Yeast/Ciliates/Metmt Universal
Ploidy Haploid/Diploid Diploid
Rates Equal/Gamma/Propinv/Invgamma/Adgamma Equal
Ngammacat <number> 4
Usegibbs Yes/No No
Gibbsfreq <number> 100
Nbetacat <number> 5
Omegavar Equal/Ny98/M3 Equal
Covarion No/Yes No
Coding All/Variable/Noabsencesites/
Nopresencesites A1l
Parsmodel No/Yes No

Note that MRBAYES 3 supports abbreviation of commands and options, so in
many cases it is sufficient to type the first few letters of a command or option
instead of the full name.

A complete list of commands and options is given in the command reference,
which can be downloaded from the program web site (http://www.mrbayes.net).
You can also produce an ASCII text version of the command reference at any time
by giving the command manual to MrRBAYEs. Further help is available in a set
of hyperlinked html pages produced by Jeff Bates and available on the MrRBAYES
web site. Finally, you can get in touch with other MrRBAYES users and developers
through the mrbayes-users’ email list (subscription information on the MrRBAYES
website).
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7.11 A simple analysis

This section is a tutorial based on the primates.nex data file. It will guide you
through a basic Bayesian MCMC analysis of phylogeny, explaining the most impor-
tant features of the program. There are two versions of the tutorial. You will first
find a Quick-Start version for impatient users who want to get an analysis started
immediately. The rest of the section contains a much more detailed description of
the same analysis.

7.11.1 Quick start version

There are four steps to a typical Bayesian phylogenetic analysis using MRBAYES:

(i) Read the NEXUS data file.
(ii) Set the evolutionary model.
(iii) Run the analysis.
(iv) Summarize the samples.

In more detail, each of these steps is performed as described in the following
paragraphs.

(1) At the MrBayes > prompt, type execute primates.nex. This will bring
the data into the program. When you only give the data file name (primates.nex),
the MRBAYES program assumes that the file is in the current directory. If this is
not the case, you have to use the full or relative path to your data file, for example,
execute ../taxa/primates.nex. If you are running your own data file for this tuto-
rial, beware that it may contain some MrRBAYES commands that can change the
behavior of the program; delete those commands or put them in square brackets
to follow this tutorial.

(2) At the MrBayes > prompt, type Iset nst=6 rates=invgamma. This sets
the evolutionary model to the GTR model with gamma-distributed rate variation
across sites and a proportion of invariable sites. If your data are not DNA or RNA,
if you want to invoke a different model, or if you want to use non-default priors,
refer to the manual available from the program web site.

(3.1) At the MrBayes > prompt, type mcmc ngen = 10 000 samplefreq =
10. This will ensure that you get at least a thousand samples (10 000/10) from the
posterior probability distribution. For larger data sets you probably want to run
the analysis longer and sample less frequently (the default sampling frequency is
every hundredth generation and the default number of generations is one million).
During the run, MRBAYES prints samples of substitution model parameters to

<

one or more files ending with the suffix “.p” and tree samples to one or more
files ending with the suffix “.t” You can find the predicted remaining time to

completion of the analysis in the last column printed to screen.
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(3.2) If the standard deviation of split frequencies is below 0.05 (or 0.01 for
more precise results) after 10 000 generations, stop the run by answering no when
the program asks Continue the analysis? (yes/no). Otherwise, keep
adding generations until the value falls below 0.05 (or 0.01).

(4.1) Summarize the parameter values by typing sump burnin = 250 (or what-
ever value corresponds to 25% of your samples). The program will output a table
with summaries of the samples of the substitution model parameters, including the
mean, mode, and 95% credibility interval of each parameter. Make sure that the
potential scale reduction factor (PSRF) is reasonably close to 1.0 for all parameters
(ideally below 1.02); if not, you need to run the analysis longer.

(4.2) Summarize the trees by typing sumt burnin=250 (or whatever value
corresponds to 25% of your samples). The program will output a cladogram with
the posterior probabilities for each split and a phylogram with mean branch lengths.
The trees will also be printed to a file that can be read by tree drawing programs
such as TREEVIEW (see Chapter 5), MACCLADE, MESQUITE, and FIGTREE (see
Chapter 5).

It does not have to be more complicated than this; however, as you get more
proficient you will probably want to know more about what is happening behind
the scenes. The rest of this section explains each of the steps in more detail and
introduces you to all the implicit assumptions you are making and the machinery
that MRBAYES uses in order to perform your analysis.

7.11.2 Getting data into MrBaves

To get data into MRBAYES, you need a so-called NEXUS file that contains aligned
nucleotide or amino acid sequences, morphological ("standard") data, restriction
site (binary) data, or any mix of these four data types. The NEXUS data file is
often generated by another program, such as MacCLADE or MESQUITE. Note,
however, that MrRBAYES version 3 does not support the full NEXUS standard, so
you may have to do a little editing of the file for MRBAYES to process it properly.
In particular, MRBAYES uses a fixed set of symbols for each data type and does not
support user-defined symbols. The supported symbols are A, C, G, T, R, Y, M, K,
S, W, H,B,V,D, N for DNA data; A, C, G, U,R, Y, M, K, S, W, H, B, V, D, N for
RNA data; A,R,N,D,C,Q,E,G,H,LL, K, M, EP S, T, W, Y, V, X for protein
data; 0, 1 for restriction (binary) data; and 0, 1, 2, 3, 4, 5, 6, 5, 7, 8, 9 for standard
(morphology) data. In addition to the standard one-letter ambiguity symbols for
DNA and RNA listed above, ambiguity can also be expressed using the NEXUS
parenthesis or curly braces notation. For instance, a taxon polymorphic for states 2
and 3 can be coded as (23), (2,3), 23, or 2,3 and a taxon with either amino acid A or
F can be coded as (AF), (A,F), AF or A,F. Like most other statistical phylogenetics
programs, MrBAYEs effectively treats polymorphism and uncertainty the same

13:25



P1: §JT

9780521877107c07 CUUK273-Lemey ISBN:978 0521 877107 Top: 0.47916in Gutter: 0.75in  August 4, 2008

242

Fredrik Ronquist, Paul van der Mark, and John P. Huelsenbeck

way (as uncertainty), so it does not matter whether you use parentheses or curly
braces. If you have symbols in your matrix other than the ones supported by
MRBAYES, you will need to replace them before processing the data block in
MRrBavYEs. You will also need to remove the “Equate” and “Symbols” statements
in the “Format” line if they are included. Unlike the NEXUS standard, MRBAYES
supports data blocks that contain mixed data types as described below.

To put the data into MRBAYES, type execute <filename> at the MrBayes >
prompt, where <filename> is the name of the input file. To process our example
file, type execute primates.nex or simply exe primates.nex to save some typing.
Note that the input file must be located in the same folder (directory) where you
started the MRBAYES application (or else you will have to give the path to the file)
and the name of the input file should not have blank spaces. If everything proceeds
normally, MrRBaYEs will acknowledge that it has read the data in the DATA block
of the NEXUS file by outputting some information about the file read in.

7.11.3 Specifying a model

All of the commands are entered at the MrBayes > prompt. At a minimum two
commands, 1set and prset, are required to specify the evolutionary model that
will be used in the analysis. Usually, it is also a good idea to check the model settings
prior to the analysis using the showmodel command. In general, 1set is used to
define the structure of the model and prset is used to define the prior probability
distributions on the parameters of the model. In the following, we will specify
a GTR + I + I model (a General Time Reversible model with a proportion of
invariable sites and a gamma-shaped distribution of rate variation across sites) for
the evolution of the mitochondrial sequences and we will check all of the relevant
priors. If you are unfamiliar with stochastic models of molecular evolution, we
suggest that you consult Chapters 4 and 10 in this book or a general text, such as
Felsenstein (2003).

In general, a good start is to type help Iset. Ignore the help information for
now and concentrate on the table at the bottom of the output, which specifies the
current settings. It should look like this:

Model settings for partition 1:

Parameter Options Current Setting
Nucmodel 4by4/Doublet/Codon 4by4
Nst 1/2/6 1
Code Universal/Vertmt/Mycoplasma/
Yeast/Ciliates/Metmt Universal

Ploidy Haploid/Diploid Diploid
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Rates Equal/Gamma/Propinv/Invgamma/Adgamma Equal
Ngammacat <number> 4
Usegibbs Yes/No No
Gibbsfreq <number> 100
Nbetacat <number> 5
Omegavar Equal/Ny98/M3 Equal
Covarion No/Yes No
Coding All/Variable/Noabsencesites/
Nopresencesites All
Parsmodel No/Yes No

First, note that the table is headed by Model settings for partition
1. By default, MrRBAYEs divides the data into one partition for each type of data
you have in your DATA block. If you have only one type of data, all data will be
in a single partition by default. How to change the partitioning of the data will be
explained in the second tutorial.

The Nucmodel setting allows you to specify the general type of DNA model.
The Doublet option is for the analysis of paired stem regions of ribosomal DNA
and the Codon option is for analyzing the DNA sequence in terms of its codons.
We will analyze the data using a standard nucleotide substitution model, in which
case the default 4by4 option is appropriate, so we will leave Nucmodel at its
default setting.

The general structure of the substitution model is determined by the Nst setting.
By default, all substitutions have the same rate (Nst=1), corresponding to the F81
model (or the JC model if the stationary state frequencies are forced to be equal
using the prset command, see below). We want the GTR model (Nst=6) instead
of the F81 model so we type Iset nst=6. MrRBAYESs should acknowledge that it has
changed the model settings.

The Code setting is only relevant if the Nucmodel is set to Codon. The Ploidy
setting is also irrelevant for us. However, we need to change the Rates setting from
the default Equal (no rate variation across sites) to Invgamma (gamma-shaped
rate variation with a proportion of invariable sites). Do this by typing Iset rates =
invgamma. Again, MRBAYEs will acknowledge that it has changed the settings. We
could have changed both 1set settings at once if we had typed Iset nst = 6 rates =
invgamma in a single line.

We will leave the Ngammacat setting (the number of discrete categories used
to approximate the gamma distribution) at the default of four. In most cases, four
rate categories are sufficient. It is possible to increase the accuracy of the likelihood
calculations by increasing the number of rate categories. However, the time it will
take to complete the analysis will increase in direct proportion to the number of
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rate categories you use, and the effects on the results will be negligible in most
cases.

The default behavior for the discrete gamma model of rate variation across sites
is to sum site probabilities across rate categories. To sample those probabilities using
a Gibbs sampler, we can set the Usegibbs setting to Yes. The Gibbs sampling
approach is much faster and requires less memory, but it has some implications
you have to be aware of. This option and the Gibbsfreq option are discussed in
more detail in the MRBaYEs manual.

Of the remaining settings, it is only Covarion and Parsmodel that are
relevant for single nucleotide models. We will use neither the parsimony model
nor the covariotide model for our data, so we will leave these settings at their default
values. If you type help Iset now to verify that the model is correctly set, the table
should look like this:

Model settings for partition 1:

Parameter Options Current Setting
Nucmodel 4by4/Doublet/Codon 4by4
Nst 1/2/6 6
Code Universal/Vertmt/Mycoplasma/
Yeast/Ciliates/Metmt Universal
Ploidy Haploid/Diploid Diploid
Rates Equal/Gamma/Propinv/Invgamma/Adgamma Invgamma
Ngammacat <number> 4
Usegibbs Yes/No No
Gibbsfreq <number> 100
Nbetacat <number> 5
Omegavar Equal/Ny98/M3 Equal
Covarion No/Yes No
Coding All/Variable/Noabsencesites/
Nopresencesites All
Parsmodel No/Yes No

7.11.4 Setting the priors

We now need to set the priors for our model. There are six types of parameters
in the model: the topology, the branch lengths, the four stationary frequencies
of the nucleotides, the six different nucleotide substitution rates, the proportion
of invariable sites, and the shape parameter of the gamma distribution of rate
variation. The default priors in MrRBAYEs work well for most analyses, and we will
not change any of them for now. By typing help prset you can obtain a list of the
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default settings for the parameters in your model. The table at the end of the help

information reads:

Model settings for partition 1:

Parameter

Options

Current Setting

Tratiopr

Revmatpr

Aamodelpr
Aarevmatpr
Omegapr
Ny98omegalpr
Ny98omega3pr
M3omegapr
Codoncatfregs
Statefreqpr
Shapepr
Ratecorrpr
Pinvarpr
Covswitchpr
Symdirihyperpr
Topologypr
Brlenspr
Treeheightpr
Speciationpr
Extinctionpr
Sampleprob
Thetapr
Nodeagepr

Treeagepr

Clockratepr
Cppratepr
Psigammapr
Nupr

Ratepr

Beta/Fixed
Dirichlet/Fixed

Fixed/Mixed
Dirichlet/Fixed
Dirichlet/Fixed
Beta/Fixed
Uniform/Exponential/Fixed
Exponential/Fixed
Dirichlet/Fixed
Dirichlet/Fixed
Uniform/Exponential/Fixed
Uniform/Fixed
Uniform/Fixed
Uniform/Exponential /Fixed
Uniform/Exponential /Fixed
Uniform/Constraints
Unconstrained/Clock
Exponential/Gamma
Uniform/Exponential/Fixed
Uniform/Exponential /Fixed
<number>
Uniform/Exponential/Fixed
Unconstrained/Calibrated
Fixed/Uniform/
Offsetexponential
Strict/Cpp/Bm
Fixed/Exponential
Fixed/Exponential/Uniform
Fixed/Exponential/Uniform
Fixed/Variable=Dirichlet

Beta(1.0,1.0)

Dirichlet
(1.0,1.0,1.0,1.0,1.0,1.0)
Fixed(Poisson)
Dirichlet(1.0,1.0,...)

Dirichlet(1.0,1.0)
Beta(1.0,1.0)
Exponential(1.0)
Exponential
Dirichlet(1.0,1.0,1.0)
Dirichlet(1.0,1.0,1.0,1.0)
Uniform(0.0,200.0)
Uniform(-1.0,1.0)
Uniform(0.0,1.0)
Uniform(0.0,100.0)
Fixed(Infinity)
Uniform
Unconstrained:Exp(10.0)
Exponential(1.0)
Uniform(0.0,10.0)
Uniform(0.0,10.0)

1.00
Uniform(0.0,10.0)

Unconstrained

Fixed(1.00)
Strict
Exponential(0.10)
Fixed(1.00)
Fixed(1.00)

Fixed

We need to focus on Revmatpr (for the six substitution rates of the GTR rate

matrix); Statefregpr (for the stationary nucleotide frequencies of the GTR

rate matrix); Shapepr (for the shape parameter of the gamma distribution of rate

variation); Pinvarpr (for the proportion of invariable sites); Topologypzr (for

the topology); and Brlenspr (for the branch lengths).
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The default prior probability density is a flat Dirichlet (all values are 1.0) for
both Revmatpr and Statefreqgpr. This is appropriate if we want to estimate
these parameters from the data assuming no prior knowledge about their values.
It is possible to fix the rates and nucleotide frequencies, but this is generally
not recommended. However, it is occasionally necessary to fix the nucleotide
frequencies to be equal, for instance, in specifying the JC and SYM models. This
would be achieved by typing prset statefreqpr = fixed(equal).

If we wanted to specify a prior that puts more emphasis on equal nucleotide
frequencies than the default flat Dirichlet prior, we could, for instance, use prset
statefreqpr = Dirichlet(10,10,10,10) or, for even more emphasis on equal frequen-
cies, prset statefreqpr = Dirichlet(100,100,100,100). The sum of the numbers in
the Dirichlet distribution determines how focused the distribution is, and the bal-
ance between the numbers determines the expected proportion of each nucleotide
(in the order A, C, G, and T). Usually, there is a connection between the parameters
in the Dirichlet distribution and the observations. For example, you can think
of a Dirichlet (150,100,90,140) distribution as one arising from observing 150 As,
100 Cs, 90 Gs, and 140 Ts in some set of reference sequences. If your set of sequences
is independent of those reference sequences, but this reference set is clearly relevant
to the analysis of your sequences, it might be reasonable to use those numbers as a
prior in your analysis.

In our analysis, we will be cautious and leave the prior on state frequencies at its
default setting. If you have changed the setting according to the suggestions above,
you need to change it back by typing prset statefreqpr = Dirichlet(1,1,1,1) or prs
st = Dir(1,1,1,1) if you want to save some typing. Similarly, we will leave the prior
on the substitution rates at the default flat Dirichlet(1,1,1,1,1,1) distribution.

The Shapepr parameter determines the prior for the « (shape) parameter of the
gamma distribution of rate variation. We will leave it at its default setting, a uniform
distribution spanning a wide range of « values. The prior for the proportion of
invariable sites is set with Pinvarpr. The default setting is a uniform distribution
between 0 and 1, an appropriate setting if we don’t want to assume any prior
knowledge about the proportion of invariable sites.

For topology, the default Uniform setting for the Topologypr parameter
puts equal probability on all distinct, fully resolved topologies. The alternative is to
constrain some nodes in the tree to always be present, but we will not attempt that
in this analysis.

The Brlenspr parameter can either be set to unconstrained or clock-
constrained. For trees without a molecular clock (unconstrained) the branch length
prior can be set either to exponential or uniform. The default exponential prior
with parameter 10.0 should work well for most analyses. It has an expectation of
1/10 = 0.1, but allows a wide range of branch length values (theoretically from 0 to

13:25
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infinity). Because the likelihood values vary much more rapidly for short branches
than for long branches, an exponential prior on branch lengths is closer to being
uninformative than a uniform prior.

7.11.5 Checking the model
To check the model before we start the analysis, type showmodel. This will give an
overview of the model settings. In our case, the output will be as follows:

Model settings:

Datatype = DNA
Nucmodel = 4by4
Nst = 6

Substitution rates, expressed as proportions
of the rate sum, have a Dirichlet prior
(1.00,1.00,1.00,1.00,1.00,1.00)

Covarion = No

# States = 4
State frequencies have a Dirichlet prior
(1.00,1.00,1.00,1.00)

Rates = Invgamma
Gamma shape parameter is uniformly dist-
ributed on the interval (0.00,200.00).
Proportion of invariable sites is uniformly dist-
ributed on the interval (0.00,1.00).
Gamma distribution is approximated using 4 categories.
Likelihood summarized over all rate categories

in each generation.

Active parameters:

Parameters
Revmat 1
Statefreq 2
Shape 3
Pinvar 4
Topology 5
Brlens 6
1 -- Parameter = Revmat
Type = Rates of reversible rate matrix

Prior = Dirichlet(1.00,1.00,1.00,1.00,1.00,1.00)

13:25
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2 -- Parameter = Pi
Type = Stationary state frequencies
Prior = Dirichlet
3 -- Parameter = Alpha
Type = Shape of scaled gamma distribution of site rates
Prior = Uniform(0.00,200.00)
4 -- Parameter = Pinvar
Type = Proportion of invariable sites
Prior = Uniform(0.00,1.00)
5 -- Parameter = Tau
Type = Topology
Prior = All topologies equally probable a priori
Subparam. =V
6 -- Parameter =V
Type = Branch lengths
Prior = Unconstrained:Exponential(10.0)

Note that we have six types of parameters in our model. All of these parameters
will be estimated during the analysis (to fix them to some estimated values, use
the prset command and specify a fixed prior). To see more information about
each parameter, including its starting value, use the showparams command.
The startvals command allows one to set the starting values of each chain
separately.

7.11.6 Setting up the analysis

The analysis is started by issuing the mcmc command. However, before doing this,
we recommend that you review the run settings by typing help mcmc. In our case,
we will get the following table at the bottom of the output:

Parameter Options Current Setting
Seed <number> 144979379
Swapseed <number> 1587146502
Ngen <number> 10000

Nruns <number> 2

Nchains <number> 4

Temp <number> 0.200000
Reweight <number>, <number> 0.00 v 0.00 "
Swapfreq <number>

Nswaps <number>
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Samplefreq <number> 10
Printfreq <number> 100
Printall Yes/No Yes
Printmax <number> 8
Mcmcdiagn Yes/No Yes
Diagnfreq <number> 1000
Diagnstat Avgstddev/Maxstddev Avgstddev
Minpartfreq <number> 0.20
Allchains Yes/No No
Allcomps Yes/No No
Relburnin Yes/No Yes
Burnin <number> 0
Burninfrac <number> 0.25
Stoprule Yes/No No
Stopval <number> 0.05
Savetrees Yes/No No
Checkpoint Yes/No Yes
Checkfreq <number> 100000
Filename <name> primates.nex.<p/t>
Startparams Current/Reset Current
Starttree Current/Random Current
Nperts <number> 0

Data Yes/No Yes
Ordertaxa Yes/No No
Append Yes/No No
Autotune Yes/No Yes
Tunefreq <number> 100
Scientific Yes/No Yes

The Seed is simply the seed for the random number generator, and Swapseed
is the seed for the separate random number generator used to generate the chain
swapping sequence (see below). Unless they are set to user-specified values, these
seeds are generated from the system clock, so your values are likely to be differ-
ent from the ones in the screen dump above. The Ngen setting is the number
of generations for which the analysis will be run. It is useful to run a small
number of generations first to make sure the analysis is correctly set up and to
get an idea of how long it will take to complete a longer analysis. We will start
with 10000 generations. To change the Ngen setting without starting the anal-
ysis we use the mcmcp command, which is equivalent to mcme except that it
does not start the analysis. Type mcmcp ngen = 10000 to set the number of
generations to 10000. You can type help mcmc to confirm that the setting was
changed appropriately.
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By default, MrBaYEs will run two simultaneous, completely independent, anal-
yses starting from different random trees (Nruns = 2). Running more than one
analysis simultaneously allows MRBAYES to calculate convergence diagnostics on
the fly, which is very helpful in determining when you have a good sample from
the posterior probability distribution. The idea is to start each run from different
randomly chosen trees. In the early phases of the run, the two runs will sample
very different trees, but when they have reached convergence (when they produce
a good sample from the posterior probability distribution), the two tree samples
should be very similar.

To make sure that MRBAYEs compares tree samples from the different runs,
check thatMcmcdiagn is set to yes and that Diagnfreq is set to some reasonable
value, such as every 1000th generation. MrRBAYEs will now calculate various run
diagnostics every Diagnfreq generation and print them to a file with the name
<Filename> .mcmc. The most important diagnostic, a measure of the similarity
of the tree samples in the different runs, will also be printed to screen every
Diagnfreq generation. Every time the diagnostics are calculated, either a fixed
number of samples (burnin) or a percentage of samples (burninfrac) from the
beginning of the chain is discarded. The relburnin setting determines whether
a fixed burnin (relburnin = no) or a burnin percentage (relburnin =
yes) is used. By default, MrRBaYEs will discard the first 25% samples from the
cold chain (relburnin = yesand burninfrac = 0.25).

By default, MrRBAYES uses Metropolis coupling to improve the MCMC sampling
of the target distribution. The Swapfreqg, Nswaps, Nchains, and Temp settings
together control the Metropolis coupling behavior. When Nchains is set to 1, no
heating is used. When Nchains is set to a value n larger than 1, then n—1
heated chains are used. By default, Nchains is set to 4, meaning that MRBAYES
will use three heated chains and one “cold” chain. In our experience, heating is
essential for some data sets but it is not needed for others. Adding more than
three heated chains may be helpful in analyzing large and difficult data sets. The
time complexity of the analysis is directly proportional to the number of chains
used (unless MrRBAYES runs out of physical RAM memory, in which case the
analysis will suddenly become much slower), but the cold and heated chains can
be distributed among processors in a cluster of computers and among cores in
multicore processors using the MPI version of the program, greatly speeding up the
calculations.

MRBAYES uses an incremental heating scheme, in which chain i is heated by
raising its posterior probability to the power 1/(1 + iA), where A is the temperature
controlled by the Temp parameter (see Section 7.5). Every Swapfreq generation,
two chains are picked at random and an attempt is made to swap their states. For
many analyses, the default settings should work nicely. If you are running many
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more than three heated chains, however, you may want to increase the number
of swaps (Nswaps) that is tried each time the chain stops for swapping. If the
frequency of swapping between chains that are adjacent in temperature is low, you
may want to decrease the Temp parameter.

The Samplefregq setting determines how often the chain is sampled. By default,
the chain is sampled every 100th generation, and this works well for most analyses.
However, our analysis is so small that we are likely to get convergence quickly.
Therefore, it makes sense to sample the chain more frequently, say every 10th
generation (this will ensure that we get at least 1000 samples when the number
of generations is set to 10000). To change the sampling frequency, type mcmcp
samplefreq = 10.

When the chain is sampled, the current values of the model parameters are
printed to file. The substitution model parameters are printed to a . p file (in our
case, there will be one file for each independent analysis, and they will be called
primates.nex.runl.pand primates.nex.run2.p). The .p files are tab
delimited text files that can be imported into most statistics and graphing programs
(including TRACER, see Chapter 18). The topology and branch lengths are printed
to a .t file (in our case, there will be two files called primates.nex.runl.t
and primates.nex.run2.t). The .t files are NEXUS tree files that can be
imported into programs like PAUP*, TREEVIEW and F1GTREE. The root of the
.p and . t file names can be altered using the Filename setting.

The Printfreq parameter controls the frequency with which the state of the
chains is printed to screen. You can leave Printfregq at the default value (print
to screen every 100th generation).

The default behavior of MRBAYES is to save trees with branch lengths to the . t
file. Since this is what we want, we leave this setting as it is. If you are running a
large analysis (many taxa) and are not interested in branch lengths, you can save a
considerable amount of disk space by not saving branch lengths.

When you set up your model and analysis (the number of runs and heated
chains), MRBAYEs creates starting values for the model parameters. A different
random tree with predefined branch lengths is generated for each chain and most
substitution model parameters are set to predefined values. For instance, stationary
state frequencies start out being equal and unrooted trees have all branch lengths
set to 0.1. The starting values can be changed by using the Startvals command. For
instance, user-defined trees can be read into MrRBAYES by executing a NEXUS file
with a “trees” block and then assigned to different chains using the Startvals
command. After a completed analysis, MRBAYES keeps the parameter values of
the last generation and will use those as the starting values for the next analysis
unless the values are reset usingmeme starttrees = random startvals
= reset.
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Since version 3.2, MRBAYEs prints all parameter values of all chains (cold and
heated) to a checkpoint file every Checkfreq generations, by default every 100 000
generations. The checkpoint file has the suffix . ckp. If you run an analysis and it
is stopped prematurely, you can restart it from the last checkpoint by using mcmc
append = yes. MrBaYEs will start the new analysis from the checkpoint; it
will even read in all the old trees and include them in the convergence diagnostic
if needed. At the end of the new run, you will obtain parameter and tree files that
are indistinguishable from those you would have obtained from an uninterrupted
analysis. Our data set is so small that we are likely to get an adequate sample from
the posterior before the first checkpoint.

7.11.7 Running the analysis

Finally, we are ready to start the analysis. Type mecmc. MrBayes will first print
information about the model and then list the proposal mechanisms that will be
used in sampling from the posterior distribution. In our case, the proposals are the
following:

The MCMC sampler will use the following moves:
With prob. Chain will change

3.45 % param. 1 (Revmat) with Dirichlet proposal
3.45 % param. (Pi) with Dirichlet proposal
3.45 % param. (Alpha) with Multiplier
3.45 % param.
17.24 % param.
34.48 % param.
17.24 % param.

17.24 % param.

(Pinvar) with Sliding window

(Tau) and 6 (V) with Extending subtree swapper
(Tau) and 6 (V) with Extending TBR

(Tau) and 6 (V) with Parsimony-based SPR

(V) with Random brlen hit with multiplier

A v v U b W N

The exact set of proposals and their relative probabilities may differ depending on
the exact version of the program that you are using. Note that MrRBAYEs will spend
most of its effort changing the topology (Tau) and branch length (V) parameters.
In our experience, topology and branch lengths are the most difficult parameters
to integrate over and we therefore let MRBAYES spend a large proportion of its
time proposing new values for those parameters. The proposal probabilities and
tuning parameters can be changed with the Propset command, but be warned
that inappropriate changes of these settings may destroy any hopes of achieving
convergence.

After the initial log likelihoods, MRBAYEs will print the state of the chains every
100th generation, like this:
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Chain results:

1 -- [-5723.498] (-5729.634) (-5727.207) (-5731.104) * [-5721.779] (-5731.701) (-5737.807) (-5730.336)

100 -- (-5726.662) (-5728.374) (-5733.144) [-5722.257] * [-5721.199] (-5726.193) (-5732.098) (-5732.563) -- 0:03:18
200 -- [-5729.666] (-5721.116) (-5731.222) (-5731.546) * (-5726.632) [-5731.803] (-5738.420) (-5729.889) -- 0:02:27
300 -- [-5727.654] (-5725.420) (-5736.655) (-5725.982) * (-5722.774) (-5743.637) (-5729.989) [-5729.954] -- 0:02:09
400 -- [-5728.809] (-5722.467) (-5742.752) (-5729.874) * (-5723.731) (-5739.025) [-5719.889] (-5731.096) -- 0:02:24
500 -- [-5728.286] (-5723.060) (-5738.274) (-5726.420) * [-5724.408] (-5733.188) (-5719.771) (-5725.882) -- 0:02:13
600 -- [-5719.082] (-5728.268) (-5728.040) (-5731.023) * (-5727.788) (-5733.390) [-5723.994] (-5721.954) -- 0:02:05

700 -- [-5717.720] (-5725.982) (-5728.786) (-5732.380) * (-5722.842) (-5727.218) [-5720.717] (-5729.936) -- 0:01:59

800 -- (-5725.531) (-5729.259) (-5743.762) [-5731.019] * (-5729.238) [-5731.272] (-5722.135) (-5727.906) -- 0:02:06
900 -- [-5721.976] (-5725.464) (-5731.774) (-5725.830) * (-5727.845) [-5723.992] (-5731.020) (-5728.988) -- 0:02:01
1000 -- (-5724.549) [-5723.807] (-5726.810) (-5727.921) * (-5729.302) [-5730.518] (-5733.236) (-5727.348) -- 0:02:06

Average standard deviation of split frequencies: 0.000000

1100 -- [-5724.473] (-5726.013) (-5723.995) (-5724.521) * (-5734.206) (-5720.464) [-5727.936] (-5723.821) -- 0:02:01

9000 -- (-5741.070) (-5728.937) (-5738.787) [-5719.056] * (-5731.562) [-5722.514] (-5721.184) (-5731.386) -- 0:00:13

Average standard deviation of split frequencies: 0.000116

9100 -- (-5747.669) [-5726.528] (-5738.190) (-5725.938) * (-5723.844) (-5726.963) [-5723.221] (-5724.665) -- 0:00:11
9200 -- (-5738.994) (-5725.611) (-5734.902) [-5723.275] * [-5718.420] (-5724.197) (-5730.129) (-5724.800) -- 0:00:10
9300 -- (-5740.946) (-5728.599) [-5729.193] (-5731.202) * (-5722.247) [-5723.141] (-5729.026) (-5727.039) -- 0:00:09
9400 -- (-5735.178) (-5726.517) [-5726.557] (-5728.377) * (-5721.659) (-5723.202) (-5734.709) [-5726.191] -- 0:00:07
9500 -- (-5731.041) (-5730.340) [-5721.900] (-5730.002) * (-5724.353) [-5727.075] (-5735.553) (-5725.420) -- 0:00:06
9600 -- [-5726.318] (-5737.300) (-5725.160) (-5731.890) * (-5721.767) [-5730.250] (-5742.843) (-5725.866) -- 0:00:05
9700 -- [-5726.573] (-5735.158) (-5728.509) (-5724.753) * (-5722.873) [-5729.740] (-5744.456) (-5723.282) -- 0:00:03
9800 -- (-5728.167) (-5736.140) (-5729.682) [-5725.419] * (-5723.056) (-5726.630) (-5729.571) [-5720.712] -- 0:00:02
9900 -- (-5738.486) (-5737.588) [-5732.250] (-5728.228) * (-5726.533) (-5733.696) (-5724.557) [-5722.960] -- 0:00:01
10000 -- (-5729.797) (-5725.507) (-5727.468) [-5720.465] * (-5729.313) (-5735.121) (-5722.913) [-5726.844] -- 0:00:00

Average standard deviation of split frequencies: 0.000105

Continue with analysis? (yes/no):

If you have the terminal window wide enough, each generation of the chain will
print on a single line.

The first column lists the generation number. The following four columns with
negative numbers each corresponds to one chain in the first run. Each column
corresponds to one physical location in computer memory, and the chains actually
shift positions in the columns as the run proceeds. The numbers are the log
likelihood values of the chains. The chain that is currently the cold chain has its
value surrounded by square brackets, whereas the heated chains have their values
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surrounded by parentheses. When two chains successfully change states, they trade
column positions (places in computer memory). If the Metropolis coupling works
well, the cold chain should move around among the columns; this means that the
cold chain successfully swaps states with the heated chains. If the cold chain gets
stuck in one of the columns, then the heated chains are not successfully contributing
states to the cold chain, and the Metropolis coupling is inefficient. The analysis may
then have to be run longer or the temperature difference between chains may have
to be lowered.

The star column separates the two different runs. The last column gives the time
left to completion of the specified number of generations. This analysis approx-
imately takes 1 second per 100 generations. Because different moves are used in
each generation, the exact time varies somewhat for each set of 100 generations,
and the predicted time to completion will be unstable in the beginning of the run.
After a while, the predictions will become more accurate and the time will decrease
predictably.

7.11.8 When to stop the analysis

At the end of the run, MRBAYEs asks whether or not you want to continue with the
analysis. Before answering that question, examine the average standard deviation
of split frequencies. As the two runs converge onto the stationary distribution,
we expect the average standard deviation of split frequencies to approach zero,
reflecting the fact that the two tree samples become increasingly similar. In our
case, the average standard deviation is zero after 1000 generations, reflecting the
fact that both runs sampled the most probable tree in the first few samples. As the
runs pick up some of the less probable trees, the standard deviation first increases
slightly and then decreases to end up at a very low value. In larger phylogenetic
problems, the standard deviation is typically moderately large initially and then
increases for some time before it starts to decrease. Your values can differ slightly
because of stochastic effects. Given the extremely low value of the average standard
deviation at the end of the run, there appears to be no need to continue the
analysis beyond 10 000 generations so, when MrRBAYEs asks “Continue with
analysis? (yes/no):’, stop the analysis by typing “no.”

Although we recommend using a convergence diagnostic, such as the standard
deviation of split frequencies, there are also simpler but less powerful methods
of determining when to stop the analysis. The simplest technique is to examine
the log likelihood values (or, more exactly, the log probability of the data given
the parameter values) of the cold chain, that is, the values printed to screen within
square brackets. In the beginning of the run, the values typically increase rapidly (the
absolute values decrease, since these are negative numbers). This is the “burn-in”
phase and the corresponding samples typically are discarded. Once the likelihood
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of the cold chain stops increasing and starts to randomly fluctuate within a more or
less stable range, the run may have reached stationarity, that is, it may be producing
a good sample from the posterior probability distribution. At stationarity, we also
expect different, independent runs to sample similar likelihood values. Trends in
likelihood values can be deceiving though; you're more likely to detect problems
with convergence by comparing split frequencies than by looking at likelihood
trends.

When you stop the analysis, MrRBaYEs will print several types of information
useful in optimizing the analysis. This is primarily of interest if you have difficulties
in obtaining convergence, which is unlikely to happen with this analysis. We give a
few tips on how to improve convergence at the end of the chapter.

7.11.9 Summarizing samples of substitution model parameters

During the run, samples of the substitution model parameters have been written
to the .p files every samplefreq generation. These files are tab-delimited text
files that look something like this:

[ID: 9409050143]

Gen LnL TL r(A<->C) ... pi(G) pi(T) alpha pinvar

1 -5723.498 3.357 0.067486 ... 0.098794 0.247609 0.580820 0.124136
10 -5727.478 3.110 0.030604 ... 0.072965 0.263017 0.385311 0.045880
9990 -5727.775 2.687 0.052292 ... 0.086991 0.224332 0.951843 0.228343
10000 -5720.465 3.290 0.038259 ... 0.076770 0.240826 0.444826 0.087738

The first number, in square brackets, is a randomly generated ID number that
lets you identify the analysis from which the samples come. The next line contains
the column headers, and is followed by the sampled values. From left to right,
the columns contain: (1) the generation number (Gen); (2) the log likelihood
of the cold chain (LnL); (3) the total tree length (the sum of all branch lengths,
TL); (4) the six GTR rate parameters (r (A<->C), r(A<->G) etc); (5) the four
stationary nucleotide frequencies (pi(A), pi(C) etc); (6) the shape parameter
of the gamma distribution of rate variation (alpha); and (7) the proportion of
invariable sites (pinvar). If you use a different model for your data set, the .p
files will, of course, be different.

MRBAYEs provides the sump command to summarize the sampled parameter
values. Before using it, we need to decide on the burn-in. Since the convergence
diagnostic we used previously to determine when to stop the analysis discarded
the first 25% of the samples and indicated that convergence had been reached after
10 000 generations, it makes sense to discard 25% of the samples obtained during
the first 10 000 generations. Since we sampled every 10th generation, there are 1000
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samples (1001 to be exact, since the first generation is always sampled) and 25%
translates to 250 samples. Thus, summarize the information in the . p file by typing
“sump burnin = 250.” By default, sump will summarize the information in the
. p file generated most recently, but the filename can be changed if necessary.

The sump command will first generate a plot of the generation versus the log
probability of the data (the log likelihood values). If we are at stationarity, this plot
should look like “white noise,” that is, there should be no tendency of increase or
decrease over time. The plot should look something like this:

- = + -5718.96
| 2 12 |

I 2 |

I 12 2 |

| 22 1*1 2 22 2 1 2 |

| 2 2 2 122 2 2 |

| 11 1 2 1 2 2 2 2 2 2 |

| 1 2 1 1 12 11 * 2 2 |

| 111 2 * 2 1 1 2 2 1 * |

| *2 2 1 22 1 211 22 |

| 2 1 1 11 1 22 1 |

| * 1 2 2 1 12 1* |

I 2 1 1 1 |

| 1 111 2 1 11 |

I 22 1 1|

| 1 |

Fommmo o fommm - +--—-- +-———- +-———- +-——-- +-——-- +-——-- +-———- +-——- + -5729.82
2500 10000

If you see an obvious trend in your plot, either increasing or decreasing, you
probably need to run the analysis longer to get an adequate sample from the
posterior probability distribution.

At the bottom of the sump output, there is a table summarizing the samples of
the parameter values:

Model parameter summaries over the runs sampled in files
‘‘primates.nex.runl.p’’ and °‘‘primates.nex.run2.p’’:
(Summaries are based on a total of 1502 samples from 2 runs)

(Each run produced 1001 samples of which 751 samples were included)

95 % Cred. Interval

TL 2.954334 0.069985 2.513000 3.558000 2.941000 1.242
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r(A<->0) 0.044996 0.000060 0.030878 0.059621 0.044567 1.016
r(A<->G) 0.470234 0.002062 0.386927 0.557040 0.468758 1.025
r(A<->T) 0.038107 0.000073 0.023568 0.056342 0.037172 1.022
r(C<->G) 0.030216 0.000189 0.007858 0.058238 0.028350 1.001
r(C<->T) 0.396938 0.001675 0.317253 0.476998 0.394980 1.052
r(G<->T) 0.019509 0.000158 0.001717 0.047406 0.018132 1.003
pi(A) 0.355551 0.000150 0.332409 0.382524 0.357231 1.010
pi(C) 0.320464 0.000131 0.298068 0.343881 0.320658 0.999
pi(G) 0.081290 0.000043 0.067120 0.095940 0.080521 1.004
pi(T) 0.242695 0.000101 0.220020 0.261507 0.243742 1.030
alpha 0.608305 0.042592 0.370790 1.142317 0.546609 1.021
pinvar 0.135134 0.007374 0.008146 0.303390 0.126146 0.999
* Convergence diagnostic (PSRF = Potential scale reduction factor [Gelman

and Rubin, 1992], uncorrected) should approach 1 as runs converge. The
values may be unreliable if you have a small number of samples. PSRF should
only be used as a rough guide to convergence since all the assumptions

that allow one to interpret it as a scale reduction factor are not met in

the phylogenetic context.

For each parameter, the table lists the mean and variance of the sampled values,
the lower and upper boundaries of the 95% credibility interval, and the median of
the sampled values. The parameters are the same as those listed in the .p files: the
total tree length (TL), the six reversible substitution rates (r (A<->C), r(A<-
>G), etc.), the four stationary state frequencies (pi (A), pi(C), etc.), the shape of
the gamma distribution of rate variation across sites (alpha), and the proportion
of invariable sites (pinvar). Note that the six rate parameters of the GTR model
are given as proportions of the rate sum (the Dirichlet parameterization). This
parameterization has some advantages in the Bayesian context; in particular, it
allows convenient formulation of priors. If you want to scale the rates relative to
the G-T rate, just divide all rate proportions by the G-T rate proportion.

Thelast column in the table contains a convergence diagnostic, the Potential Scale
Reduction Factor (PSRF). If we have a good sample from the posterior probability
distribution, these values should be close to 1.0. If you have a small number of
samples, there may be some spread in these values, indicating that you may need
to sample the analysis more often or run it longer. In our case, we can probably
obtain more accurate estimates of some parameters easily by running the analysis

slightly longer.

7.11.10 Summarizing samples of trees and branch lengths

Trees and branch lengths are printed to the .t files. These files are NEXUS-
formatted tree files with a structure like this:

Top: 0.47916in Gutter: 0.75in  August 4, 2008
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#NEXUS

[ID: 9409050143]

[Param: tree]

begin trees;
translate

1 Tarsius_syrichta,

Lemur_catta,
Homo_sapiens,
Pan,
Gorilla,
Pongo,
Hylobates,

Macaca_fuscata,

© 00 N O U W N

M_mulatta,

=
o

M_fascicularis,

=
[

M_sylvanus,
12 Saimiri_sciureus;

tree rep.1 = ((12:0.486148,(((((3:0.042011,4:0.065025):0.034344,5:0.051939...

tree rep.10000 = (((((10:0.087647,(8:0.013447,9:0.021186):0.030524):0.0568...

end;

To summarize the tree and branch length information, type “sumt burnin =
250.” The sumt and sump commands each have separate burn-in settings, so it
is necessary to give the burn-in here again. Most MRBAYEs settings are persistent
and need not be repeated every time a command is executed, but the settings are
typically not shared across commands. To make sure the settings for a particular
command are correct, you can always use help <command> before issuing the
command.

The sumt command will output, among other things, summary statistics for
the taxon bipartitions, a tree with clade credibility (posterior probability) values,
and a phylogram (if branch lengths have been saved). The summary statistics (see
below) describe each split (clade) in the tree sample (dots for the taxa that are on
one side of the split and stars for the taxa on the other side; for instance, the sixth
split (ID 6) is the terminal branch leading to taxon 2 since it has a star in the second
position and a dot in all other positions). Then it gives the number of times the
split was sampled (\#obs), the probability of the split (Probab. ), the standard
deviation of the split frequency (Stdev(s)) across runs, the mean (Mean(v))
and variance (Var (v)) of the branch length, the Potential Scale Reduction Factor
(PSRF), and finally the number of runs in which the split was sampled (Nruns).
In our analysis, there is overwhelming support for a single tree, so almost all splits
in this tree have a posterior probability of 1.0.
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Summary statistics for taxon bipartitions:

Probab.

Var(v)

PSRF

Gutter: 0.75in  August 4, 2008

ID --

Partition #obs
1 -—- ... o 1502
2 - . - 1502
3 —- L * 1502
4 -— L * 1502
5 —— oo, * 1502
6 -- 1502
7 -- 1502
8 P R S 1502
9 —- ..., ok ok 1502

10 -- ....... kk ok 1502

11 -- e 1502

12 -- e 1502

13 -- ..... oo 1502

14 -— i * 1502

15 -- ...... .. 1502

16 -- FRE L. 1502

17 -- e 1502

18 -- 1502

19 -- o 1502

20 - PR 1501

21 -- R L. 1500

.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.999334
.998668

Stdev(s) Mean(v)
0.000000 0.035937
0.000000 0.056738
0.000000 0.022145
0.000000 0.072380
0.000000 0.017306
0.000000 0.345552
0.000000 0.496361
0.000000 0.273113
0.000000 0.045900
0.000000 0.258660
0.000000 0.049774
0.000000 0.062863
0.000000 0.146137
0.000000 0.430463
0.000000 0.173405
0.000000 0.080733
0.000000 0.055286
0.000000 0.116993
0.000000 0.059082
0.000942 0.124653
0.000000 0.030905

0.000083
0.000148
0.000037
0.000338
0.000037
0.003943
0.006726
0.003798
0.000315
0.002329
0.000110
0.000147
0.000665
0.004978
0.000940
0.000375
0.000409
0.001254
0.000219
0.001793
0.000135

.000
.006
.077
.007
.036
.066
.152
.021

.041
.014

The clade credibility tree (upper tree) gives the probability of each split or clade
in the tree, and the phylogram (lower tree) gives the branch lengths measured in

expected substitutions per site:

Clade credibility values:

| /

| /--100--+

I [ \

| /--100--+

| | \-mmmmo-

| /---100--+

+ | N\

[ /--100--+

Tarsius_syrichta (1)

Lemur_catta (2)

Homo_sapiens (3)

Pan (4)

Gorilla (5)

Pongo (6)
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! I \mmmmm e Hylobates (7)
|
! | [==—m==== Macaca_fuscata (8)
| /--100--+ /--100--+
‘ I I | \======== M_mulatta (9)
I | | /--100--+
! ' ' I \mmmmmmm e M_fascicularis (10)
\--100--+ \-—=--== 100---—-- +

l \=mmmmmmmmm oo M_sylvanus (11)

|
\mmmm oo Saimiri_sciureus (12)

Phylogram (based on average branch lengths):

[ Tarsius_syrichta (1)

= Lemur_catta (2)

I
| /---- Homo_sapiens (3)
| ot
| | \----- Pan (4)
| fre N
| | \---- Gorilla (5)
! S
. | | Pongo (6)
/T —— +
| | G —— Hylobates (7)

[ + /-+

|

I

I

| | /-- Macaca_fuscata (8)
I

| | | | \-- M_mulatta (9)

I
I

| ! /o
| | | \---- M_fascicularis (10)
\ ____________________ + \ __________________ +
| \-—-=-- M_sylvanus (11)
|
\ = Saimiri_sciureus (12)

In the background, the sumt command creates three additional files. The first
is a .parts file, which contains the list of taxon bipartitions, their posterior
probability (the proportion of sampled trees containing them), and the branch
lengths associated with them (if branch lengths have been saved). The branch
length values are based only on those trees containing the relevant bipartition.
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The second generated file has the suffix . con and includes two consensus trees.
The first one has both the posterior probability of clades (as interior node labels)
and the branch lengths (if they have been saved) in its description. A graphical
representation of this tree can be generated in the program TREEVIEW by Rod
Page or FIGTREE by Andrew Rambaut (see Chapter 5 and Chapter 18). The second
tree only contains the branch lengths and it can be imported into a wide range
of tree-drawing programs such as MacCraDE and MEsqQuITE. The third file
generated by the sumt command is the . trprobs file, which contains the trees
that were found during the MCMC search, sorted by posterior probability.

7.12 Analyzing a partitioned data set

MRrBavYEs handles a wide variety of data types and models, as well as any mix of
these models. In this example we will look at how to set up a simple analysis of a
combined data set, consisting of data from four genes and morphology for 30 taxa
of gall wasps and outgroups. A similar approach can be used, for example, to set
up a partitioned analysis of molecular data coming from different genes. The data
set for this tutorial is found in the file cynmix.nex.

7.12.1 Getting mixed data into MrBaves

First, open up the NEXUS data file in a text editor. The DATA block of the NEXUS
file should look familiar but there are some differences compared to the pri-
mates.nex file in the format statement:

Format datatype = mixed(Standard:1-166,DNA:167-3246)

interleave=yes gap=- missing="?;

First, the datatype is specified as datatype = mixed(Standard:1--
166, DNA:167-3246). This means that the matrix contains standard (mor-
phology) characters in columns 1-166 and DNA characters in the remaining
columns. The mixed datatype is an extension to the NEXUS standard. This
extension was originated by MRBAYEs 3 and may not be compatible with other
phylogenetics programs.

Second, the matrix is interleaved. It is often convenient to specify mixed data in
interleaved format, with each block consisting of a natural subset of the matrix,
such as the morphological data or one of the gene regions.

7.12.2 Dividing the data into partitions

By default, MrBAYEs partitions the data according to data type. There are only two
data types in the matrix, so this model will include only a morphology (standard)
and a DNA partition. To divide the DNA partition into gene regions, it is convenient
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to first specify character sets. In principle, this can be done from the command
line, but it is more convenient to do it in a MRBAYESs block in the data file. With
the MrBaYEs distribution, we added a file cynmix-run.nex with a complete
MRrBavYEs block. For this section, we are going to create a command block from
scratch, but you can consult the cynmix-run . nex for reference.

In your favorite text editor, create a new file called cynmix-command . nex in
the same directory as the cynmix . nex file and add the following new MrBAYES
block (note that each line must be terminated by a semicolon):

#NEXUS

begin mrbayes;

execute cynmix.nex;

charset morphology = 1-166;
charset COI = 167-1244;
charset EFla = 1245-1611;
charset LWRh = 1612-2092;
charset 28S = 2093-3246;

The first line is required to comply with the NEXUS standard. With the exe-
cute command, we load the data from the cynmix.nex file and the charset
command simply associates a name with a set of characters. For instance, the char-
acter set COT is defined above to include characters 167 to 1244. The next step
is to define a partition of the data according to genes and morphology. This is
accomplished with the line (add it after the lines above):

partition favored = 5: morphology, COI, EFla, LWRh, 28S;

The elements of the partition command are: (1) the name of the partitioning
scheme (favored); (2) an equal sign (=); (3) the number of character divisions
in the scheme (5); (4) a colon (:); and (5) a list of the characters in each division,
separated by commas. The list of characters can simply be an enumeration of the
character numbers (the above line is equivalentto partition favored = 5:
1-166, 167-1244, 1245-1611, 1612-2092, 2093-3246;) but it is
often more convenient to use predefined character sets as we did above. The final
step is to tell MRBAYEs that we want to work with this partitioning of the data
instead of with the default partitioning. We do this using the set command:

set partition = favored;

Finally, we need to add an end statement to close the MrRBaYEs block. The
entire file should now look like this:
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#NEXUS

begin mrbayes;

execute cynmix.nex;

charset morphology = 1-166;

charset COI = 167-1244;

charset EFla = 1245-1611;

charset LWRh = 1612-2092;

charset 28S = 2093-3246;

partition favored = 5: morphology, COI, EFla, LWRh, 28S;
set partition = favored;

end;

When we read this block into MRBAYES, we will get a partitioned model with the
first character division being morphology, the second division being the COI gene,
etc. Save the data file, exit your text editor, and finally launch MRBAYEs and type
execute cynmix-command.nex to read in your data and set up the partitioning
scheme.

7.12.3 Specifying a partitioned model
Before starting to specify the partitioned model, it is useful to examine the
default model. Type “showmodel” and you should get this table as part of the
output:

Active parameters:

Partition(s)

Parameters 1 2 3 4 5
Statefreq 1 2 2 2 2
Topology 3 3 3 3 3
Brlens 4 4 4 4 4

There is a lot of other useful information in the output of showmodel but this
table is the key to the partitioned model. We can see that there are five partitions
in the model and four active (free) parameters. There are two stationary state
frequency parameters, one for the morphological data (parameter 1) and one for
the DNA data (parameter 2). Then there is also a topology parameter (3) and a
set of branch length parameters (4). Both the topology and branch lengths are the
same for all partitions.

Now, assume we want a separate GTR + I" + I model for each gene partition.
All the parameters should be estimated separately for the individual genes. Assume
further that we want the overall evolutionary rate to be (potentially) different
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across partitions, and that we want to assume gamma-shaped rate variation for the
morphological data. We can obtain this model by using 1set and prset with the
applyto mechanism, which allows us to apply the settings to specific partitions.
For instance, to apply a GTR + I + I model to the molecular partitions, we type
Iset applyto = (2,3,4,5) nst = 6 rates = invgamma. This will produce the following
table when showmodel is invoked:

Active parameters:

Partition(s)

Parameters 1 2 3 4 5
Revmat 11 1 1
Statefreq 2 3 3 3 3
Shape . 4 4 4 4
Pinvar 5 5 5 5
Topology 6 6 6 6 6
Brlens 7 7 7 7 7

As you can see, all molecular partitions now evolve under the correct model
but all parameters (statefreq, revmat, shape, pinvar) are shared across
partitions. To unlink them such that each partition has its own set of parameters,
type: unlink statefreq = (all) revmat = (all) shape = (all) pinvar = (all). Gamma-
shaped rate variation for the morphological data is enforced with Iset applyto = (1)
rates = gamma. The trickiest part is to allow the overall rate to be different across
partitions. This is achieved using the ratepxr parameter of the prset command.
By default, ratepr is set to fixed, meaning that all partitions have the same
overall rate. By changing this to variable, the rates are allowed to vary under a flat
Dirichlet prior. To allow all our partitions to evolve under different rates, type prset
applyto = (all) ratepr = variable.

The model is now essentially complete but there is one final thing to consider.
Typically, morphological data matrices do not include all types of characters. Specif-
ically, morphological data matrices do not usually include any constant (invariable)
characters. Sometimes, autapomorphies are not included either, and the matrix
is restricted to parsimony-informative characters. For MRBAYEs to calculate the
probability of the data correctly, we need to inform it of this ascertainment (cod-
ing) bias. By default, MRBAYEs assumes that standard data sets include all variable
characters but no constant characters. If necessary, one can change this setting
using 1set coding. We will leave the coding setting at the default, though.
Now, showmodel should produce this table:
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Active parameters:

Partition(s)

Parameters 1 2 3 4 5
Revmat .1 2

Statefreq 5 6 7

Shape 10 11 12 13 14
Pinvar .15 16 17 18
Ratemultiplier 19 19 19 19 19
Topology 20 20 20 20 20
Brlens 21 21 21 21 21

7.12.4 Running the analysis

When the model has been completely specified, we can proceed with the analysis
essentially as described above in the tutorial for the primates.nex data set.
However, in the case of the cynmix . nex dataset, the analysis will have to be run
longer before it converges.

When looking at the parameter samples from a partitioned analysis, it is useful
to know that the names of the parameters are followed by the character division
(partition) number in curly braces. For instance, pi(A){3} is the stationary
frequency of nucleotide A in character division 3, which is the EF1a division in the
above analysis.

In this section we have used a separate NEXUS file for the MrRBAYEs block.
Although one can add this command block to the data file itself, there are several
advantages to keeping the commands and the data blocks separate. For example,
one can create a set of different analyses with different parameters in separate
“command” files and submit all those files to a job scheduling system on a computer
cluster.

7.12.5 Some practical advice

As you continue exploring Bayesian phylogenetic inference, you may find the
following tips helpful:

(1) Ifyou are anxious to get results quickly, you can try running without Metropo-
lis coupling (heated chains). This will save a large amount of computational time
at the risk of having to start over if you have difficulties getting convergence. Turn
off heating by setting the mcmc option nchains to 1 and switch it on by setting
nchains to a value larger than 1.

(2) If you are using heated chains, make sure that the acceptance rate of
swaps between adjacent chains are in the approximate range of 10% to 70% (the

13:25



P1: §JT

9780521877107c07 CUUK273-Lemey ISBN:978 0521 877107 Top: 0.47916in Gutter: 0.75in  August 4, 2008

266

Fredrik Ronquist, Paul van der Mark, and John P. Huelsenbeck

acceptance rates are printed to the . mcmc file and to screen at the end of the run). If
the acceptance rates are lower than 10%, decrease the temperature constant (mcmc
temp=<value>); if the acceptance rates are higher than 70%, increase it.

(3) If you run multiple simultaneous analyses or use Metropolis coupling and
have access to a machine with several processors or processor cores, or if you
have access to a computer cluster, you can speed up your analyses considerably
by running MrBAYES in parallel under MPI. See the MrBAYES website for more
information about this.

(4) If you are using automatic optimization of proposal tuning parameters, and
your runs are reasonably long so that MrRBAYEs has sufficient time to find the
best settings, you should not have to adjust proposal tuning parameters manu-
ally. However, if you have difficulties getting convergence, you can try selecting a
different mix of topology moves than the one used by default. For instance, the
random SPR move tends to do well on some data sets, but it is switched off by
default because, in general, it is less efficient than the default moves. You can add
and remove topology moves by adjusting their relative proposal probabilities using
the propset command. Use showmoves allavailable = yes firstto see
a list of all the available moves.

For more information and tips, turn to the MRBAYES website (http://mrbayes.
net) and the MRBAYES users’ email list.
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