
()Cladistics 00, 387]400 1998
WWW http:rrwww.apnet.com
Article No. cl980082

Fast Fitch-Parsimony Algorithms for Large Data Sets

Fredrik Ronquist
Department of Zoology, Uppsala University, Villavagen 9, SE-752 36 Uppsala, Sweden¨
Received for publication 3 November 1998

The speed of analytical algorithms becomes increas-
ingly important as systematists accumulate larger data
sets. In this paper I discuss several time-saving modifi-
cations to published Fitch-parsimony tree search algo-
rithms, including shortcuts that allow rapid evaluation
of tree lengths and fast reoptimization of trees after
clipping or joining of subtrees, as well as search strate-
gies that allows one to successively increase the
exhaustiveness of branch swapping. I also describe how
Fitch-parsimony algorithms can be restructured to take
full advantage of the computing power of modern
microprocessors by horizontal or vertical packing of
characters, allowing simultaneous processing of many
characters, and by avoidance of conditional branches
that disturb instruction flow. These new multicharacter
algorithms are particularly useful for large data sets of
characters with a small number of states, such as nu-
cleotide characters. As an example, the multicharacter
algorithms are estimated to be 3.6–10 times faster than
single-character equivalents on a PowerPC 604. The
speed gain is even larger on processors using MMX,
Altivec or similar technologies allowing single instruc-
tions to be performed on multiple data simultaneously.
Q 1998 The Willi Hennig Society

INTRODUCTION

Parsimony analysis is widely accepted as

Correspondence to Fredrik Ronquist.
E-mail: fredrik.ronquist@zoologi.uu.se

one of the best methods of phylogenetic inference
Ž .e.g., Huelsenbeck and Hillis, 1993 . Compared with
alternative methods based on the search for the best

Ž .tree s under an explicit optimality criterion, parsi-
mony analysis is fast. Yet, the time consumption may
be prohibitive for some data sets, forcing compart-
mentalization of the problem or other modifications

Žthat possibly distort the results Donoghue, 1994;
.Nixon et al., 1994 . As systematists accumulate larger

data sets, these difficulties become a major obstacle to
further progress. Thus, increased efficiency of parsi-
mony algorithms should be an important objective in
the research agenda of phylogenetic systematists.

The fundamental parsimony optimization algo-
Žrithms are well known Farris, 1970; Fitch, 1970, 1971;

Swofford and Maddison, 1987; Maddison and
.Maddison, 1992; Goloboff, 1994 , as well as general

features of exact and heuristic tree search strategies
Žimplemented in current computer programs e.g.,

Swofford and Maddison, 1987; Swofford, 1993;
.Swofford and Olsen, 1991; Kumar et al., 1994 .

However, specific details in the algorithms are
rarely discussed, such as shortcuts and other tricks
that can improve speed significantly. A notable excep-

Ž .tion is Goloboff 1993, 1994 , who described a rapid
bisection]reconnection algorithm as well as several
shortcuts implemented in NONA, one of the fastest
programs for heuristic parsimony analysis of large

Ž .data sets. I concur with Goloboff 1993 that sharing
ideas for better methods will eventually foster re-
finement of parsimony programs and phylogenetic
analysis. In this vein, I describe here some algorithms
for tree searches under Fitch parsimony that are faster
than those published by Goloboff.

0748-3007r98r040401 q 10 $30.00r0
Copyright Q 1998 by The Willi Hennig Society
All rights of reproduction in any form reserved 387

Ronquist388

TERMINOLOGY AND ASSUMPTIONS

I will only consider tree bisection]reconnection
searches but most of the techniques are applicable to
other types of searches, including subtree
pruning]regrafting, stepwise addition, and branch-
and-bound. Tree bisection]reconnection takes an ini-

Ž .tial tree and clips it into two or more components
Ž .Goloboff, 1993, 1994; Swofford, 1993 . The subtrees
are reconnected at all possible positions and the length
of each rearrangement is compared to that of the
original tree. When a tree of the same length as the
starting tree is found, the new tree is added to the
tree set in memory. If a shorter tree is found, the trees
in memory are deleted and a new round of swapping
is initiated on the shorter tree. The search halts when
all rearrangements have been tried on all trees in
memory and no additional trees of the same length or

shorter can be found.
The algorithms work with unrooted, dichotomous

trees consisting of a number of internal and terminal
nodes connected by branches. The nodes are desig-

Ž .nated with capital letters A, B, C, D; Fig. 1A . A tree
can be rooted by adding a root node to any one of the
branches. Thus, there is a potential root node for each
branch in the tree. The potential roots are designated
R , where A and B are the two nodes adjacent to theAB

Ž .root Fig. 1A . One potential root node can be chosen
as calculation root for calculation purposes.

A state set is assigned to an internal node in first-
pass and final-pass optimization by combining infor-
mation from some or all of the three surrounding
nodes. First-pass optimization results in a preliminary

Ž .state set designated PA for a node A whereas
Žfinal-pass optimization gives the final state set desig-

.nated FA for a node A . A state set is usually repre-

Ž . Ž .FIG. 1. Terminology used in the paper. A Capital letters are used to designate internal or terminal nodes in the tree A, B, C, etc. . On each
Ž .branch there is a potential root node designated R , where A and B are the two nodes adjacent to the root. B, C In tree bisection]AB

reconnection, an initial tree is clipped into two subtrees, the source tree and the target tree. The target subtree is the one containing the root
node that was used for calculating the state sets of internal nodes in the initial tree. The two internal nodes adjacent to the clip, S and T,

Ž .become potential root nodes in their respective trees, each replacing two potential root nodes in the initial tree. D A recombined tree is
Ž . Ž .obtained by connecting a root node in one of the subtrees R with a root node in the other subtree R .VX YZ

Copyright Q 1998 by The Willi Hennig Society
All rights of reproduction in any form reserved

Parsimony Algorithms 389

sented in the computer by a binary variable where
each bit records whether a state is included in the set
Ž . Ž .bit set to 1 or not bit set to 0; c. Fig. 3A . The
number of bits required depends on the number of
states in the character. A two-state character requires
a variable with two bits, a four-state character a
variable with four bits, and so on.

Terminal nodes have a single state set, the
Ž . Žobserved state s . Potential root nodes e.g., R ;AD

.Fig. 1A only have a final state set, which is calcu-
lated from the final state sets of the two adjacent

Ž .internal nodes A and D for R ; Fig. 1A .AD

When a tree is clipped into two parts, the part
containing the calculation root will be called the

Žtarget tree and the other part the source tree Figs 1B,
. ŽC . The two nodes closest to the clip, S and T Fig.
.1B , become potential root nodes in their respective

tree after the clip, and a pair of previous potential
root nodes in each tree becomes obsolete. For

Ž .instance, S becomes a potential root node R in theKL
Ž .source tree replacing R and R Figs 1B, C .KS LS

In reconnecting the two subtrees, a potential root
Ž .node in the source tree e.g., R ; Fig. 1D isVX

connected to a potential root node in the target tree
Ž .e.g., R ; Fig. 1D , and the length of the resultingYZ

combined tree is calculated.
For maximum speed, the algorithms should be

programmed in assembly but they are described here
in a mixture of BASIC and plain English for clarity.
The following symbols have been borrowed from C
Ž .Kernighan and Ritchie, 1978 :

Ž& bitwise AND operation corresponding to an
.intersection

ŽN bitwise OR operation corresponding to a
.union

Ž .; one’s complement bitwise NOT
!s not equal
4 binary right shift
< binary left shift.

The time needed for an algorithm depends on the
processor, the exact sequence of instructions used,
memory organization, and a number of other factors.
As an example illustrating some of the timing consid-
erations typical for modern microprocessors, I have
given the theoretical maximum throughput for the
algorithms described here on a PowerPC 604 proces-

Ž .sor c. Table 8 . The PowerPC 604 is a superscalar
processor which can execute two simple integer in-

structions, one complex integer instruction, one load
instruction and one branch instruction per clock cycle
Ž .Anonymous, 1995 . A conditional branch which is
predicted correctly will usually not affect through-
put, whereas an incorrect prediction will typically
cause a delay of three clock cycles, and these values
have been used here. I have further assumed that
there are no delays in fetching instructions or
data from memory and that stalls caused by data
dependencies are avoided, if possible, by efficient
scheduling of instructions.

BASIC SEARCH STRATEGY

First, an initial near-minimal tree is obtained by
Žstepwise addition or by some other means e.g.,

.Foulds et al., 1979; Swofford, 1993 . The length of the
initial tree and a preliminary set of states for each
node is then calculated using first-pass optimization
Ž .Fitch, 1970 . One proceeds from the terminals to-
wards an arbitrarily chosen root node, the calculation
root. Assume that the calculation root is placed below
node D and we are calculating the state set of node A
Ž .Fig. 1A . By proceeding from the terminals towards
the root, we have assured that PB and PC have
already been calculated. Now, if the intersection of
PB and PC is empty, PA is the union of PB and PC
and one step is added to tree length; otherwise, PA is

Ž .the intersection of PB and PC Table 1 . When the
calculation root is reached, the tree length is known
and all internal nodes, including the calculation root,
have been assigned preliminary state sets.

The final state sets are calculated using final-pass
optimization proceeding from the calculation root

Ž .towards the terminals Fitch, 1971 . The algorithm is
Ž .fairly complicated with several branches Table 2 ,

but most characters in near-minimal trees will only
pass through steps 1]3 and 9]10.

When the initial tree is clipped, each subtree is
again subjected to first-pass and final-pass optimiza-

Ž .tion but see the qsearch shortcut discussed below . A
potential root node is now chosen in the source tree
Ž .R ; Fig. 1D , and its states are obtained as theVX

union of the final state sets of the two adjacent nodes
Ž . Ž .V and X; Fig. 1D Table 3 . The length of each
rearrangement derivable from that rooting is calcu-

Copyright Q 1998 by The Willi Hennig Society
All rights of reproduction in any form reserved

Ronquist390

TABLE 1

Algorithm 1—Single-Character Algorithm for First-Pass
Ž .Optimization of Nonadditive Characters based on Fitch, 1970

and Length Calculation

Step Instruction

1 Load PB and PC
2 Let PAsPB & PC
3 If PA !s0 go to 6
4 Let PAsPBNPC
5 Let TLsTLq1
6 Store PA
7 Proceed from 1 with next character

TL is tree length; for other symbols, see text and Fig. 1.

lated by combining the state set of the root node with
the final state sets of two adjacent nodes in the target

Ž .tree Y and Z; Fig. 1D . No step is added if a state is
shared between R and Y or between R and Z;VX VX

Žotherwise, one step is added Table 4; Goloboff, 1993,
.1994 . To avoid unnecessary calculations, the length

is tested against the length of the initial tree each
time a step is added. If the length exceeds that of the

Ž .shortest tree s , one can proceed with the next tree
rearrangement.

When all the potential roots of the source tree have
been tried on all possible branches of the target tree,
a new clipping of the initial tree is examined. The
possible rearrangements of the initial tree are
exhausted when all possible clippings have been
examined.

In the program documentation to PIWErNONA,
Ž .Goloboff 1993 described two important shortcuts.

The qsearch shortcut concerns reoptimization of sub-

TABLE 2

Algorithm 2—Single-character Algorithm for Final-Pass
Optimization of Nonadditive Characters
Ž .based on Fitch, 1971

Step Instruction

1 Load PA and FD
2 Let FAsPA & FD
3 If FAsFD go to 9
4 Load PB and PC

Ž .5 If PB & PC s0 go to 8
ŽŽ . .6 Let FAs PBNPC & FD NPA

7 Go to 9
8 Let FAsFDNPA
9 Store FA

10 Proceed from 1 with next character

Symbols explained in text and Fig. 1.

TABLE 3

Algorithm 3—Single-Character Algorithm for Calculating the
Ž .State Set of a Potential Root Node based on Goloboff, 1994

Step Instruction

1 Load FV and FX
2 FR sFVNFXVX
3 Store FRVX
4 Proceed with next character

Symbols explained in text and Fig. 1.

trees after clipping. By definition, the calculation root
Žin the initial tree ended up in the target subtree Fig.

.1C . Now, one can see that if the preliminary and
final state sets of node S are identical before the clip,
then reoptimization will not affect the final state sets
in the source tree. A large fraction of the characters in
near-minimal trees will fulfil this condition, so the
qsearch shortcut can save considerable amounts of

Žtime Goloboff reported speed gains of 20 times or
.more . Unfortunately, the same shortcut cannot be

Ž .used in the target tree. Goloboff 1993 suggested
using various comparisons of state sets around the
clipped branch to guess which characters need reopti-
mization in the target tree, but this may introduce
errors in tree length calculations.

The qcollapse shortcut deals with tree comparison
Žwhen unsupported branches are collapsed Goloboff,

.1993 . Before a tree is clipped, each branch is tested
against the collapse criterion. If a rearrangement re-

TABLE 4

Algorithm 4—Single-Character Algorithm for Evaluating the
Length of a Tree Rearrangement from the State Set of a Root
Node in the Source Tree and the Final State Sets of Two

Ž .Adjacent Nodes in the Target Tree based on Goloboff, 1994

Step Instruction

a1 Load FR , FY, and FZXV
Ž .2 Let SsFR & FYNFZXV

3 If Ss0 go to 6
4 Let ALsALq1
5 If AL)DIFF stop
6 Proceed from 1 with next character

a To avoid stalls because of data dependencies, load operations
must be done one cycle ahead of the other instructions, i.e., load

Ž .instructions step 1 for the next character must be issued before
Ž .calculating the union step 2 of the current character.

AL is the length added by the joining of subtrees, DIFF is the
difference between the length of the initial tree and the summed
length of the clipped trees, and S is a temporary variable. Other
symbols are explained in the text and in Fig. 1.

Copyright Q 1998 by The Willi Hennig Society
All rights of reproduction in any form reserved

Parsimony Algorithms 391

sulting in a tree of the same length as the initial tree
did not move the source tree across some supported
branches in the target tree, the initial and rearranged
tree are likely to collapse to the same polytomous
tree, and the rearrangement can be discarded before
time is wasted on comparing it with trees in memory.

SOME IMPROVEMENTS

Most of the time during a tree bisection]

reconnection search is spent examining the length of
Ž .alternative rearrangements algorithm in Table 4 , so

the speed of this algorithm is crucial to overall speed.
If there are many optimal trees of equal length, con-
siderable time will also be consumed by tree compar-

Ž .isons this algorithm is not discussed here . The speed
Žof subtree reoptimization algorithms in Table 1

.and 2 is of little importance in tree bisection]

reconnection searches except for the early phase when
rearrangements leading to shorter trees are found
often, but it is significant throughout subtree
pruning]regrafting searches.

The time required to calculate the length of a rear-
rangement with the algorithm in Table 4 depends on
the frequency of characters that change on the branch.

ŽFor maximum speed, the branch instruction step 3;
.Table 4 should be predicted as taken. The through-

put on a PowerPC 604 will then be one character
Žwithout change per three clock cycles assuming that

loads are done one cycle ahead of dependent instruc-
tions so that stalls caused by load latencies can be

.avoided and one character with change per seven
Žcycles three additional cycles for recovering from the

mispredicted branch and one cycle for the other in-
.structions in the branch .

The speed of this algorithm can be improved by
calculating and storing the state sets of all possible
root nodes in the source and target trees before
recombining them. Although this procedure requires
twice as much memory, it reduces the required load

Ž .instructions from three to two per character Table 5
and decreases the handling time per character with

Ž14]33% from seven to six clock cycles for characters
changing state and from three to two clock cycles for

.other characters . Of course, one runs the risk that a
tree shorter than the ones in memory will be found

TABLE 5

Algorithm 5—Single-Character Algorithm for Evaluating the
Length of a Tree Rearrangement from the State Set of a Potential
Root Node in the Source Tree and a Potential Root Node in
the Target Tree

Step Instruction

1 Load FR , FRXV YZ
2 Let SsFR & FRXV YZ
3 If Ss0 go to 6
4 Let ALsALq1
5 If AL)DIFF stop
6 Proceed with next character

Symbols as in Table 4. DIFF can be calculated using the algo-
rithm on the two root nodes adjacent to the clip in the initial tree
Ž .R and R ; Fig. 1C .KL MN

before the state sets of all root nodes have been used.
However, the potential root node state sets can be
transferred to the new tree with only minor changes
as will be described below.

Ž .Goloboff pers. comm. uses an alternative
approach that avoids precalculation of root states.
The algorithm in Table 4 is modified by loading only
one of the state sets in the target tree together with
the root state set of the source tree. The union of
these values is then calculated. If it is empty, the
second state set in the target tree is loaded and a new
union with the root state set is calculated. If this is
also empty, one step is added to tree length. This
algorithm is fast for most nonchanging characters
Ž .requiring two cycles but is very slow for changing

Ž .characters requiring at least nine cycles because
calculation of the second union has to wait until the
load completes. In addition, some nonchanging char-
acters will be delayed because the first union is

Žempty requiring at least ten cycles if the second
.branch is predicted as not taken . The relative advan-

tage of precalculating root states decreases or disap-
pears if load instructions that could be scheduled

Žahead of dependent instructions are not as is
.probably common in most existing programs .

With a new, improved qsearch shortcut, only a few
state sets in the source and target trees need be
recalculated after clipping. This is done by moving
away from the clipped branch in both subtrees, up-
dating node sets on the way, and stopping as soon as
no additional change will occur further away from

Ž .the clipped branch Fig. 2 . Assume that the node
closest to the clip is used as the calculation root in the

Copyright Q 1998 by The Willi Hennig Society
All rights of reproduction in any form reserved

Ronquist392

Ž .source tree Fig. 2A . Only the final state sets need
then be considered in the source tree, because the
preliminary state sets will not be affected by the clip.

ŽIf the final and preliminary state sets of node S Fig.
.1B are the same, no reoptimization is necessary in

Ž Ž .the source tree Goloboff’s 1993 original qsearch
.shortcut . If the sets differ, one calculates the new

final state sets for the two descendants of R , i.e.,KL
Ž .nodes K and L Figs 1C, 2A . The new final state sets

are again compared to the final state sets in the initial
tree. If the new and old sets are identical, it is
unnecessary to proceed further away from the calcu-
lation root in that direction; otherwise, the next set of
descendant nodes are considered. Unless a character
is extremely homoplastic on the tree being examined,
it is unlikely that more than a few nodes away from

the clipped branch need to be reoptimized; actually,
most characters in near-optimal trees will need no
reoptimization at all.

A similar shortcut can be used in the reoptimiza-
tion of the target tree. The clip divides the target tree

Ž .in a root part the N-part containing the calculation
Ž .root and a crown part the M-part; Figs 1B, 2B .

Assuming that the same calculation root is used, all
preliminary state sets in the crown part will be unaf-
fected by the clip. Now, one compares the prelimi-

Ž .nary set of T with the preliminary set of M Fig. 1B .
If they are identical, there will be no change in the
preliminary state sets of the target tree. If not, a new
preliminary state set is calculated for node N and
compared with the old set. As long as the state sets
are not equivalent, one continues down the tree

Copyright Q 1998 by The Willi Hennig Society
All rights of reproduction in any form reserved

Parsimony Algorithms 393

TABLE 6

Algorithm 6—Single-Character Algorithm for First-Pass
Reoptimization and State Test

Step Instruction

a a1 Load *PA, PB , and PC
2 Let SsPB & PC
3 If S !s0 go to 5
4 Let SsPBNPC
5 If Ss*PA stop
6 Push *PA and its address onto stack

Ž .7 Store S replacing *PA
Ž .8 Proceed with next node ancestor of A

a If this is not the first node being reoptimised, one of the PB or
PC loads can be replaced with a register move instruction.

A prefixed asterisk denotes a state set that has not been updated.
For other symbols see text and Fig. 1.

Ž .towards the calculation root Fig. 2B . When a node is
reached for which the sets are the same, the first-pass
reoptimization is completed and one returns to the

Žprevious node the last node that had its state set
.changed and recalculates the final states for that

node. The final-pass reoptimization proceeds up the
tree, considering all descendant branches, as long as
the new set differs from the old one or the node is

Žbetween the calculation root and the M-node i.e.,
.ancestral to the T-node . On the way, the state sets of

the affected potential roots are updated. For most
characters in near-optimal trees, it will be sufficient to
assure that the preliminary state sets of the M-node
and T-node and the final state sets of the N-node and
T-node are identical; no reoptimization will be
needed.

The algorithms for first-pass and final-pass reopti-
Žmization including state set comparisons Tables 6

.and 7 are considerably slower than the simple
first-pass and final-pass algorithms, but this will be
more than compensated for by the fact that at most a
few internal and root nodes need to be reoptimised
for each character. Unless there are high levels of
homoplasy, which is unlikely in near-optimal trees,
the qsearch shortcut will bring down reoptimization
times considerably. Keeping the number of characters
constant, the reoptimization time should be largely

Žindependent of tree size a slight decrease may actu-
ally occur if the number of character changes per
branch decreases with increasing tree size; c. Goloboff,

.1993 .
The qsearch shortcut described here is better than

Ž .that of Goloboff 1993 in two respects. First,

TABLE 7

Algorithm 7—Single-Character Algorithm for Final-Pass
Reoptimization and State Test, Including Necessary
Updates of Potential Root Node State Sets

Step Instruction

1 Load PA, FD and *FA
2 Let SsPA & FD
3 If SsFD go to 9
4 Load PB and PC
5 If PB & PCs0 go to 8

ŽŽ . .6 Let Ss PBNPC & FD NPA
7 Go to 9
8 Let SsFDNPA

a9 If Ss*FA go to 17
10 Push *FA and its address onto stack

Ž .11 Store S replacing *FA
12 Let SsSNFD
13 Push *FR and its address onto stackAD

Ž .14 Store S replacing *FRAD
15 Push pointer to right descendant of A

onto stack
16 Proceed from 1 with left descendant of A
17 Pop pointer from stack
18 If stack empty proceed with next character
19 Proceed from 1 with the node pointed to by

the pointer

a In the target tree, the condition A not on the path to the
clipped branch should also be met for the branch to be taken.
A prefixed asterisk denotes a state set that has not been updated.
For other symbols see text and Fig. 1.

Goloboff’s shortcut can be applied exactly only to the
source tree, whereas the one described here allows
exact and selective reoptimization of both subtrees.
Second, Goloboff’s shortcut has an all-or-none
response. If a possible change in optimization is
detected for a character, the character will be reopti-
mized for the entire subtree. However, even in those
cases it is unlikely that the state assignments will
change for more than a few nodes close to the clipped
branch. The shortcut described here only makes the
necessary changes.

The improved qsearch shortcut described here was
independently discovered and described under the
name ‘‘incremental two-pass optimization’’ by

Ž .Goloboff in a paper Goloboff, 1996 that was in press
when the present paper was first submitted. As noted

Ž .by Goloboff 1996 , the improved qsearch shortcut is
considerably faster than incremental optimization in

Ž .its original formulation Gladstein, 1997 .
Goloboff’s incremental two-pass optimization

records a local cost for each node in the tree. This
value is used in calculating the summed length of the

Copyright Q 1998 by The Willi Hennig Society
All rights of reproduction in any form reserved

Ronquist394

clipped trees. However, the local cost values are not
necessary. Total tree length need be calculated only
once during an entire tree search, for instance for the
first tree to be swapped upon. During the rest of the
search it is sufficient to work with length differences.
When a tree is clipped, the difference between the
initial tree length and the sum of the source and
target tree lengths is obtained by calculating the
length added by combining the root nodes R andKL

Ž .R after reoptimization Fig. 1C , as if the subtreesMN

were to be rejoined where the initial tree was clipped.
This length difference is then used to determine
whether a new rearrangement is successful in finding
a tree of the same length as those in memory or
shorter.

When a tree shorter than those in memory is found,
the tree stack is cleared and the new tree is used as
the starting point for clipping. The state sets for the
new starting tree need not be recalculated from
scratch. Instead, it is possible to update the state sets
of the source and target subtrees using essentially the
same procedure as in the reoptimization of the target
subtree after clipping. First, preliminary state sets are
updated from the point of reunion towards the root
until the new and old preliminary sets agree. One
then moves upwards using final-pass reoptimization
until the final state sets agree. Thus, the preliminary,
final, and root node state sets of the new tree are
obtained with a minimum of calculations.

When a new tree of the same length as those in
memory is found, it is added to the tree stack. Only
the topology of the tree is saved, otherwise too much
memory would be required. When the tree is recalled
from the stack, the preliminary, final and root node
state sets have to be recalculated from scratch.
However, such full optimizations will not be needed
very often, and will only take a small fraction of the
total search time.

If zero-length branches are to be collapsed, it is
essential that branches can be checked against the
collapse criterion quickly. Two criteria are in com-
mon use: minimum length and maximum length. The
minimum length of a branch is easily obtained from
the final state sets of the two nodes incident to the

Ž .branch Goloboff, 1994 as the number of characters
for which the intersection of the final state sets is
empty. Maximum length, which is a stricter criterion
Ž .fewer branches are collapsed , is used in some

Žparsimony-analysis programs e.g., Swofford and
.Maddison, 1987, Swofford, 1993 but was not consid-

Ž .ered by Goloboff 1994 . However, the first compari-
Žson in the final-pass optimization algorithm step 3,

.Table 2: FDsPA & FD is equivalent to a test of
whether or not the maximum length of the branch
is 0. Thus, branches can be tested against the
maximum-length collapse criterion during final-
pass optimization without any extra calculations.

ADDITIONAL SHORTCUTS

In very large analyses, tree bisection]reconnection
searches may be prohibitively time-consuming de-
spite the shortcuts discussed above. One possibility is
then to limit swapping to nearest neighbour inter-

Žchanges or subtree pruning]regrafting Swofford,
.1993 . However, alternative ways of restricting the

swapping may be more efficient. I suggest two ap-
proaches which should be examined in more detail
by empirical studies. First, tree clipping may be
restricted to the l longest branches in the initial tree.
These are the clippings that seem most likely to lead
to shorter trees. This strategy is similar to how mor-
phologists compartmentalize large phylogenetic anal-
yses by treating well defined groups separately
Ž .Donoghue, 1994 . One can carry the analogy one step
further and do separate parsimony analyses on the
clipped subtrees, but this is not normally done in tree
bisection]reconnection searches. Second, tree rear-
rangements may be restricted to the m nodes closest
to the clip. Again, these are the rearrangements which

Žappear most likely to yield shorter trees Goloboff,
.1993 . If ms1, this neighbourhood swapping is

equivalent to nearest neighbour interchanges. As the
value of m increases, the search becomes more ex-
haustive until it converts into tree bisection]

reconnection. Subtree pruning]regrafting is peculiar
in that one node in the source tree is combined with
all nodes in the target tree, even those far away from
the clip. Assuming that far displacements of the
source tree are unlikely to yield shorter trees, subtree
pruning]regrafting will be less efficient than neigh-
bourhood swapping for a given computational effort.
An additional advantage of neighbourhood swapping
over subtree pruning]regrafting is that the former

Copyright Q 1998 by The Willi Hennig Society
All rights of reproduction in any form reserved

Parsimony Algorithms 395

can make better use of fast cache memory. An effi-
cient use of neighbourhood swapping would be to
start searches with a small neighbourhood and then
increase the size of the neighbourhood as it becomes
more and more difficult to find shorter trees.

MULTICHARACTER ALGORITHMS

It is possible to further increase the speed of the
search algorithms by taking advantage of two fea-
tures of modern microprocessors such as the Pentium

Ž .and PowerPC processors Anonymous, 1998a, 1998b .
ŽFirst, these processors handle large units 32 or 64

.bits, with AltiVec technology 128 bits in each clock
cycle. Because characters rarely have more than four
or five different states, the processor can optimize
many characters simultaneously given suitable algo-
rithms. Second, these processors are superscalar
Žseveral independent execution units operate in par-

. Žallel and pipelined each instruction goes through
.several successive stages before being completed for

maximum throughput. A conditional branch instruc-
tion will significantly degrade the performance of
such a system unless it almost always goes the same
way so that the outcome can be predicted correctly
most of the time.

There are two options for packing characters into
larger units: horizontal packing, in which several
single-character variables are concatenated to form a

Ž .larger unit Fig. 3B , and vertical packing, in which

Ž .one variable is used for each character state Fig. 3B .
Character packing is most efficient for characters that
have a constant and small number of states, such as
nucleotide characters.

Multicharacter algorithms have to be formulated
for a specific number of states determining the maxi-
mum number of different states that the algorithms
can handle. Nucleotide characters can be analysed
with algorithms designed for characters with four

Ž .states gaps coded as state unknown or for charac-
Žters with five states gaps coded as an additional

.state . In the Appendix, I present Fitch-parsimony
algorithms for both horizontally packed and verti-
cally packed characters with a maximum of four
states.

In principle, the length-of-recombination algorithm
Ž .Table 4 could be used with only slight modifica-
tions for horizontally packed characters by feeding
the first three operations character sets rather than
characters, and then extracting the result of the
AND-operation in step 3 one character at a time and
testing it against zero. However, to avoid the branch
instructions, which cannot be predicted efficiently, I

Žsuggest using a mask with every fourth bit set for
.four-state characters together with shift instructions

Ž .steps 3]6; Algorithm 8 in Appendix to obtain a
binary number F in which every fourth bit records for
the corresponding character whether a change

Ž . Ž .occurred bit set to 1 or not bit set to 0 on the
branch being considered. All bits in F can be filled by
completing three additional character sets before up-
dating the tree length. A looping bit-counter with

Ž .FIG. 3. Different forms of character packing for a four-state nucleotide character on an 8-bit machine. A No packing. One variable is used
Ž .to hold the state set of a single character. B Horizontal packing. The state sets of several characters are concatenated to form a single

Ž .variable. C Vertical packing. One variable is used for each state and records information from many characters.

Copyright Q 1998 by The Willi Hennig Society
All rights of reproduction in any form reserved

Ronquist396

Ž .two branches is used steps 8]11 to update the tree
length. Both branches can be predicted efficiently: the
first as not-taken and the second as taken. However,
the looping bit-counter cannot take full advantage of
the parallel execution units. When many characters in
the set or sets being considered change state on the
branch, an explicit bit-counter which extracts all bits
in F one at a time and adds them to the tree length is

Ž .faster c. steps 9]13; Algorithm 9 in Appendix . To
increase speed when F equals zero, F is first tested

Ž .against zero step 8 .
The corresponding algorithm for vertically packed

Ž .characters Algorithm 9 uses a few simple operations
to obtain the binary number F, in which every bit
records whether or not a character changed state.

Ž .Both a looping bit-counter c. Algorithm 8 and an
Ž .explicit bit-counter Algorithm 9 can be used to

update the tree length.
The relative speed of the single-character and

multicharacter length-of-recombination algorithms on
the PowerPC 604 varies depending on the type of
bit-counter used and the frequency of characters that

Ž .change state Fig. 4 . The vertical-packing algorithms
are from 2.2]5.8 times faster than the single-character
algorithm, while the algorithms for horizontally

Žpacked characters are slightly slower data not shown
.here . The looping bit-counter is faster than the ex-

plicit bit-counter when few characters change state
and vice versa. During tree bisection]reconnection
searches of large data sets, one might expect most
rearrangements to be relatively poor fits, so that the
mean proportion of characters changing on the
branches being evaluated would be fairly high.
Therefore, it is likely that overall performance would
be better with an explicit bit counter.

The multicharacter first-pass and final-pass reopti-
Ž .mization algorithms Algorithms 10]13 use integer

logical operations instead of conditional branches
Žcompare with the corresponding single-character al-

.gorithms in Table 6 and 7 . They are considerably
Ž .faster than their single-character equivalents Table 8

but the raw speed does not tell the whole truth. The
qsearch shortcut is less efficient with multicharacter
algorithms because a full set of characters will have
to be reoptimized even when reoptimization is truly
needed for only a few or even a single character in
the set. Horizontal-packing algorithms are less sus-
ceptible to this problem since they combine fewer
characters in the same set. The problem can be

FIG. 4. Comparison of the speed of single-character and multi-
character algorithms during calculation of the length of a tree

Ž .recombination on a PowerPC 604 processor a 32-bit processor .
Among the multicharacter algorithms, the speed is given for a

Ž .vertical-packing algorithm with a looping bit-counter c. Table 8
and a vertical-packing algorithm with an explicit bit counter in-
cluding two tests against zero, one after the load operations and

Ž . Ž .one after 16 bits have been counted c. Table 9 . A Time con-
Ž .sumption in number of cycles per 32 characters. B Relative speed

gain of the multicharacter algorithms. The explicit bit counter is
superior to the looping bit counter when many characters change
state.

reduced considerably by combining characters such
that characters with highly congruent state distribu-
tions end up in the same character sets. Such combi-
nation will also speed up the length-of-recombination

Ž .algorithms Algorithms 8 and 9 considerably by in-
creasing the frequency of character sets with either no

Žchanging characters or many changing characters c.

Copyright Q 1998 by The Willi Hennig Society
All rights of reproduction in any form reserved

Parsimony Algorithms 397

TABLE 8

Timing Characteristics of Single-Character and Vertical-Packing Multicharacter Algorithms on a PowerPC 604 Processor.
The Throughput is Given as the Number of Clock Cycles Required for 32 Four-State Characters. The Vertical-Packing
Length-of-Recombination Algorithm is Assumed to use an Explicit Bit-Counter

Single-character Vertical packing
a bAlgorithm Needed Table Cycles Table Cycles Speed gain

Ž .First-pass with length calculation Once 1 96 12 13 7.4
Ž . Ž .Simple first-pass Rarely 1 96 12 13 7.4

Ž . Ž .Final-pass incl. potential roots Rarely 2]3 128 13 25 5.1
Reoptimization test Often — 64 — 8 8.0

cFirst-pass reoptimization Intermediate 6 192 12 26 7.4
cFinal-pass reoptimization Intermediate 7 384 13 41 9.4

dLength of recombination Very often 5 128 9 36 3.6
cRestore state sets Intermediate — 96 — 9 10.7

a Approximate frequency with which the algorithm is used during a tree bisection]reconnection search.
b ŽRaw speed gain of vertical-packing algorithm over single-character equivalent assuming 50% of characters change length-of-recombina-

. Ž .tion algorithm or no characters change state other algorithms .
c Net speed gain will be considerably smaller for these algorithms for reasons explained in the text.
d Assuming the use of an explicit bit counter.

.Fig. 4B . Even in the worst case, the qsearch shortcut
would not be slower with multicharacter algorithms
than with single-character algorithms.

PROSPECTS

The recent development of technologies such as
Ž . ŽMMX Anonymous, 1998b and AltiVec Anony-

.mous, 1998a further accentuates the advantages of
multicharacter parsimony algorithms. Both MMX and
AltiVec allow processors to simultaneously perform
the same instruction on larger units than normally

Žhandled by the processor 64 bits for MMX and 128
.for AltiVec , accelerating multicharacter algorithms.

For instance, a vertical-packing multicharacter algo-
rithm for calculating the length of a rearrangement
Ž .Algorithm 9 is likely to be about an order of magni-

Žtude faster than a corresponding traditional but pro-
.cessor-optimized single-character algorithm. These

enormous speed gains should help overcome the
disadvantage of having to adapt core algorithms in
parsimony analysis programs to the type of processor
being used in the machines they are running on.

ACKNOWLEDGEMENTS

I am grateful to Pablo Goloboff for comments and suggestions.

REFERENCES

Ž .Anonymous. 1995 . ‘‘PowerPC 604 RISC Microprocessor User’s
Manual’’. Program and documentation available on the
Internet at http:rrwww.mot.comrSPSrPowerPCrteksupportr
teklibraryrindex.html.

Ž .Anonymous. 1998a . ‘‘AltiVec Technology Programming Environ-
ments Manual. Preliminary Version’’. Program and
documentation available on the Internet at http:rr
www.mot.com r SPS r PowerPC r teksupport r teklibrary r
index.html.

Ž .Anonymous. 1998b . ‘‘MMX technology developers guide’’. Pro-
gram and documentation available on the Internet at http:rr
developer.intel.comrdrgrmmxrdgr.

Ž .Donoghue, M. J. 1994 . Progress and prospects in reconstructing
plant phylogeny. Ann. Missouri Bot. Gard. 81, 405]418.

Ž .Farris, J. S. 1970 . Methods for computing Wagner trees. Syst. Zool.
19, 83]92.

Ž .Farris, J. S. 1988 . ‘‘Hennig86, Version 1.5’’. Program and docu-
mentation distributed by D. Lipscomb, George Washington
University, Washington, D.C.

Ž .Fitch, W. M. 1970 . Distinguishing homologous from analogous
proteins. Syst. Zool. 19, 99]113.

Ž .Fitch, W. M. 1971 . Toward defining the course of evolution:
Minimum change for a specific tree topology. Syst. Zool. 20,
406]416.

Ž .Goloboff, P. A. 1993 . ‘‘NONA, Version 1.1’’. Computer program
and documentation distributed by J. M. Carpenter, American
Museum of Natural History, New York.

Ž .Goloboff, P. A. 1994 . Character optimization and calculation of
tree lengths. Cladistics 9, 433]436.

Ž .Goloboff, P. A. 1996 . Methods for faster parsimony analysis.
Cladistics 12, 199]220.

Copyright Q 1998 by The Willi Hennig Society
All rights of reproduction in any form reserved

Ronquist398

Ž .Gladstein, D. S. 1997 . Efficient incremental character optimiza-
tion. Cladistics 13, 21]26.

Ž .Huelsenbeck, J. P., and Hillis, D. M. 1993 . Success of phylogenetic
methods in the four-taxon case. Syst. Biol. 42, 247]264.

Ž .Kernighan, B. W., and Ritchie, D. M. 1978 . ‘‘The C Programming
Language’’, 2nd ed. Prentice-Hall, London.

Ž .Kumar, S., Tamura, K., and Nei, M. 1994 . MEGA: Molecular
evolutionary genetics analysis software for microcomputers.
Computer Appl. Biosci. 10, 189]191.

Ž .Maddison, W. P., and Maddison, D. R. 1992 . ‘‘MacClade:
Analysis of Phylogeny and Character Evolution’’. Sinauer,
Sunderland, MA.

Ž .Nixon, K. C., Crepet, W. L., Stevenson, D., and Fries, E. M. 1994 .
A reevaluation of seed plant phylogeny. Ann. Missouri Bot.
Gard. 81, 484]533.

Ž .Swofford, D. L. 1993 . ‘‘PAUP: Phylogenetic Analysis Using Parsi-
mony, Version 3.1’’. Program and Documentation, Laboratory of
Molecular Systematics, Smithsonian Institution, Washington,
D.C.

Ž .Swofford, D. L., and Maddison, W. P. 1987 . Reconstructing ances-
tral character states under Wagner parsimony. Math. Biosci. 87,
199]229.

Ž .Swofford, D. L., and Olsen, G. J. 1990 . Phylogeny reconstruction.
Ž .In ‘‘Molecular Systematics’’ D. M. Hillis, and C. Moritz, Eds ,

pp. 411]501. Sinauer, Sunderland.

APPENDIX

Multicharacter Fitch-parsimony algorithms

Algorithm 8

Four-state horizontal-packing algorithm for calcu-
lating whether the length added by combining the

Ž .root nodes R and R Fig. 1D is smaller thanVX YZ

DIFF, the difference between the length of the initial
tree and the summed length of the source and target
trees. MASK is a binary mask with every fourth bit

Ž .set 000100010001 A looping bit counter is used
Ž .to update the added length AL based on the

Ž .number of bits set in F steps 8]11 .

1 Load PR and PRVX YZ
Ž .2 Let Ss; PR & PRVX YZ

3 Let FsS & MASK
4 For Is1 to 3

Ž .5 Let FsF & S4 I
6 Next I
7 If Fs0 go to 12

Ž .8 Let FsF & Fy1
9 Let ALsALq1

10 If AL)DIFF proceed with next
rearrangement

11 If F!s0 go to 8
12 Proceed with next character set

Algorithm 9

Four-state vertical-packing algorithm for calculat-
ing whether the length added by combining the root

Ž .nodes R and R Fig. 1 is smaller than DIFF, theVX YZ

difference between the length of the initial tree and
the summed length of the source and target trees.
The variable PR 0 contains information about stateVX

0 for potential root node R , PR 1 informationVX VX

about state 1, and so on. An explicit bit counter is
used to update the added length based on the

Ž .number of bits set in F steps 9]14 .

1 Load PR 0, PR 1, PR 2 and PR 3VX VX VX VX

2 Load PR 0, PR 1, PR 2 and PR 3YZ YZ YZ YZ

3 Let S0sPR 0 & PR 0VX YZ

4 Let S1sPR 1 & PR 1VX YZ

5 Let S2sPR 2 & PR 2VX YZ

6 Let S3sPR 3 & PR 3VX YZ
Ž .7 Let Fs; S0NS1NS2NS3

8 If Fs0 go to 14
9 For Is1 to number of bits in Fa

Ž .10 Let ALsALq F & 1
11 If AL)DIFF proceed with next

rearrangement
12 Let FsF41
13 Next I
14 Proceed with next character set

Algorithm 10

Four-state horizontal-packing first-pass reoptimiza-
tion algorithm with state test.
1 Load PB,b PC,b *PA, *F
2 Push *F and its address onto stack

Ž .3 Let Ss; PB & PC
4 Let UsPBNPC
5 Let FsS & MASK
6 For Is1 to 3

a The loop 9]13 is replaced by repetition of steps 10 to 12 in the
Žactual machine coding of the algorithm. Step 11 is optional need

.not be repeated for every step .
b If this is not the first node being reoptimized, one of the load

operations may be replaced with register moves.

Copyright Q 1998 by The Willi Hennig Society
All rights of reproduction in any form reserved

Parsimony Algorithms 399

Ž .7 Let FsF & S41
8 Next I
9 For Is1 to 3

Ž .10 Let FsFN F<1
11 Next I

Ž .12 Store F replacing *F
Ž . Ž .13 Let Ss ;S N F & U

14 If Ss*PA stop
15 Push *PA and its address onto stack

Ž .16 Store S replacing *PA
17 Proceed with ancestor of A

Algorithm 11

Four-state horizontal-packing final-pass reopti-
mization algorithm with state test and updating of
potential root node state sets.
1 Load PA, PB, PC, FD, *FA, and F

Ž .2 Let XsFD & ;PA
Ž .3 Let Gs ;X & MASK

4 For Is1 to 3
ŽŽ . .5 Let GsG & ;X 41

6 Next I
7 For Is1 to 3

Ž .8 Let GsGN G<1
9 Next I

Ž Ž ..10 Let Ss FDN ;G & PA
Ž .11 Let Ss FD & F NS
ŽŽŽŽŽ . . Ž ..12 Let Ss PBNPC & FD & ;F &

Ž ..;G NS
13 If Ss*FA go to 21c

14 Push *FA and its address onto stack
Ž .15 Store S replacing *FA

16 Let SsSNFD
17 Push *FR and its address onto stackAD

Ž .18 Store S replacing *FRAD

19 Push pointer to right descendant of A onto
stack

20 Proceed from 1 with left descendant of A
21 Pop pointer from stack
22 If stack empty proceed with next character

set
23 Proceed from 1 with the node pointed to by

the pointer

c In the target tree, the condition A not on the path to the
clipped branch should also be met for the branch to be taken.

Algorithm 12
Four-state vertical-packing first-pass reoptimization

algorithm with state test.
1 Load PB0, PB1, PB2, and PB3d

2 Load PC0, PC1, PC2, and PC3d

3 Load *PA0, *PA1, *PA2, *PA3
4 Load *F
5 Push *F and its address onto stack
6 Let S0sPB0 & PC0
7 Let S1sPB1 & PC1
8 Let S2sPB2 & PC2
9 Let S3sPB3 & PC3

10 Let U0sPB0NPC0
11 Let U1sPB1NPC1
12 Let U2sPB2NPC2
13 Let U3sPB3NPC3

Ž .14 Let Fs; S0NS1NS2NS3
Ž .15 Store F replacing *F

Ž .16 Let S0sS0N F & U0
Ž .17 Let S1sS1N F & U1
Ž .18 Let S2sS2N F & U2
Ž .19 Let S3sS3N F & U3

20 If S0s*PA0 and S1s*PA1 and S2s*PA2
and S3s*PA3 stop

21 Push *PA0, *PA1, *PA2, and *PA3 and their
address onto stack

Ž22 Store S0, S1, S2, and S3 replacing *PA0,
.*PA1, *PA2, and *PA3

23 Proceed with ancestor of A

Algorithm 13
Four-state vertical-packing final-pass reoptimiza-

tion algorithm with state test and updating of
potential root node state sets.
1 Load PA0, PA1, PA2, PA3
2 Load PB0, PB1, PB2, PB3
3 Load PC0, PC1, PC2, PC3
4 Load FD0, FD1, FD2, FD3
5 Load *FA0, *FA1, *FA2, *FA3
6 Load F

Ž .7 Let X0sFD0 & ;PA0
Ž .8 Let X1sFD1 & ;PA1
Ž .9 Let X2sFD2 & ;PA2
Ž .10 Let X3sFD3 & ;PA3

11 Let GsX0NX1NX2NX3
Ž . ŽŽ . .12 Let S0s FD0 & F N GNFD0 & PA0

d If this is not the first node being reoptimized, one of the set of
load operations may be replaced with register moves.

Copyright Q 1998 by The Willi Hennig Society
All rights of reproduction in any form reserved

Ronquist400

Ž . ŽŽ . .13 Let S1s FD1 & F N GNFD1 & PA1
Ž . ŽŽ . .14 Let S2s FD2 & F N GNFD2 & PA2
Ž . ŽŽ . .15 Let S3s FD3 & F N GNFD3 & PA3

ŽŽŽŽŽ . . Ž .. .16 S0s PB0NPC0 & FD0 & ;F & G NS0
ŽŽŽŽŽ . . Ž .. .17 S1s PB1NPC1 & FD1 & ;F & G NS1
ŽŽŽŽŽ . . Ž .. .18 S2s PB2NPC2 & FD2 & ;F & G NS2
ŽŽŽŽŽ . . Ž .. .19 S3s PB3NPC3 & FD3 & ;F & G NS3

20 If S0s*FA0 and S1s*FA1 and S2s*FA2
and S3s*FA3 go to 31e

21 Push *FA0, *FA1, *FA2, and *FA3 and their
address onto stack

Ž22 Store S0, S1, S2, and S3 replacing *FA0,
.*FA1, *FA2, and *FA3

e In the target tree, the condition A not on the path to the
clipped branch should also be met for the branch to be taken.

23 Let S0sS0NFD0
24 Let S1sS1NFD1
25 Let S2sS2NFD2
26 Let S3sS3NFD3
27 Push *FR 0y*FR 3 and their addressAD AD

onto stack
Ž28 Store S0, S1, S2, and S3 replacing

.*FR 0y*FR 3AD AD

29 Push pointer to right descendant of A onto
stack

30 Proceed from 1 with left descendant of A
31 Pop pointer from stack
32 If stack empty proceed with next character

set
33 Proceed from 1 with the node pointed to by

the pointer

Copyright Q 1998 by The Willi Hennig Society
All rights of reproduction in any form reserved

	INTRODUCTION
	BASIC SEARCH STRATEGY
	SOME IMPROVEMENTS
	ADDITIONAL SHORTCUTS
	MULTICHARACTER ALGORITHMS
	PROSPECTS
	ACKNOWLEDGEMENTS
	REFERENCES
	FIGURES
	FIG. 1.
	FIG. 2.
	FIG. 3.
	FIG. 4.

	TABLES
	TABLE 1
	TABLE 2
	TABLE 3
	TABLE 4
	TABLE 5
	TABLE 6
	TABLE 7
	TABLE 8

	APPENDIX
	Algorithm 8
	Algorithm 9
	Algorithm 10
	Algorithm 11
	Algorithm 12
	Algorithm 13

