Hitta hit:
T-bana: Universitetet
Frescativägen 40

Ordinarie öppettider:
Tisdag-söndag 10-18


  • Huvudmeny

Deep-Sea Ecosystems: Biogeography of Methane-Seep Faunas Through Time

Summary

Life in the deep-sea has fascinated both scientists and the public for centuries, yet many evolutionary and biogeographic questions remain controversial. The biogeography of the deep-sea today has a historical basis for which the fossil record provides the most direct evidence.

With this project I aim to provide the first survey and analysis of the biogeographic evolution of deep-sea metazoans through the last 50 million years of Earth’s history on a global scale. The deep-sea methane-seep fauna provides an excellent model system for this purpose:

  1. It consists of characteristic taxa that can readily be identified;
  2. These characteristic taxa are restricted to the deep sea and this restriction is known from the geologic past and even among now extinct taxa;
  3. Seep faunas have a much higher fossilization potential than ‘ordinary’ deep-sea taxa due to the in situ carbonate precipitation at methane seeps.

Based on new material from three key areas and using novel analytical approaches, I will focus on four main questions:

  • Was the Pacific Ocean the center of origin?
  • Was the Atlantic Ocean colonized through the Isthmus of Panama?
  • Which role did the former Tethys Ocean have in faunal dispersal?
  • What were the effects of the Messinian salinity crisis?

This research is funded by the Swedish Research Council (VR)

External Project Participants

Marco Taviani (researcher), CNR-ISMAR, Bologna, Italy

Selected Publications

Kiel S 2016. A biogeographic network reveals evolutionary links between deep sea hydrothermal vent and methane seep faunas. Proceedings of the Royal Society B (283): 20162337.

Kiel S & Hansen BT 2015. Cenozoic methane-seep faunas of the Caribbean region. PLoS ONE 10: e0140788.

Natalicchio M, Peckmann J, Birgel D & Kiel S. 2015, Seep deposits from northern Istria, Croatia: a first glimpse into the Eocene seep fauna of the Tethys region. Geological Magazine 152: 444–459.