Oceanographic conditions and diversity of sea stars (Echinodermata: Asteroidea) in the Gulf of California, México

Carlos E. Cintra-Buenrostro¹, Héctor Reyes-Bonilla¹ & María Dinorah Herrero-Pérez⁰¹

¹ Departamento de Biología Marina, Universidad Autónoma de Baja California Sur, A.P. 19-B, Carr. al Sur Km 5.5, La Paz, B.C.S., México; ccb@geo.arizona.edu; hreyes@uabcs.mx
² Centro Interdisciplinario de Ciencias Marinas-IPN, Departamento de Pesquerías y Biología Marina, A.P. 592, C.P. 23000, La Paz, B.C.S., México; dainoper@hotmail.com

* Corresponding author: Dept. of Geosciences, University of Arizona, Tucson, AZ 85721, USA. Tel. (520) 626-5275.

Abstract: Species richness is one of the best indicators of biodiversity. However, there are few investigations on concordance of diversity patterns and environmental settings for marine regions. The objectives of this study were to correlate species richness of shallow water (< 200 m deep) sea stars with key oceanographic factors in the Gulf of California, México, and to predict species richness of Asteroidea using multiple regressions. In these analyses the Gulf was divided into nine sections of one degree in latitude (from 23 - 31° N), at each section we recorded: continental shelf area (at 100 and 200 m depth), temperature mean and range at three depth levels (0, 60 and 120 m), thermocline depth, surface nutrient concentrations (nitrates, phosphates and silicates), surface photosynthetic pigment concentration, and integrated productivity. Sea star species richness at each latitudinal section was estimated from literature data, new collections and museum records. Species were assigned to one of the following feeding guilds: predators of small mobile invertebrates (I), detritivores (D), predators of colonial organisms (C), generalist carnivores (G), and planktivores (P). There are 47 shallow water asteroid species in the Gulf of California (16 I, 15 D, eight C, six G, one P and one not assigned). Total species richness and guild species richness showed strong latitudinal attenuation patterns and were higher in the southernmost Gulf, an area characterized by a narrow shelf, high temperature, and low nutrient concentrations. Species diversity for each guild was correlated to a set of oceanographic parameters: temperature, nitrate concentration, and integrated productivity were linked to richness in most cases. We detected that nutrients and surface pigments always presented negative relationships with species richness, indicating that productive environments limit asteroid diversity in the study area. Finally, the postulated regression models to estimate species richness from oceanographic data were significant and highly precise. We conclude that species richness of Asteroidea in the Gulf of California is related to oceanographic conditions and can be estimated from regional oceanographic information.

Keywords: Asteroidea, Gulf of California, Biogeography, Oceanography, Species Richness, Multiple Regression.

Biogeography in the Gulf of California has been studied almost exclusively from a descriptive point of view (Briggs 1974, Laguna 1990). A key conclusion of many studies is that the Gulf has a relatively high level of endemism and thus can be considered an independent province within the Eastern Pacific (Briggs 1974, Brusca and Wallerstein 1979, Wickstein 1989, Bernard et al. 1991). Thus it is implied that local environmental conditions are the selective forces that favour speciation, and thus the latter may control distribution and variety of taxa. However, no actual relationships between oceanographic factors and species distributions or richness have been determined, although sea temperature and primary productivity have been invoked to explain biogeographic zonation in the region (Santamaría del Angel et al. 1989).
Continental shelf area can also influence diversity of warm-water marine faunas (Bellwood and Hughes 2001), but that study was conducted on such a large scale that its applicability might be limited. One of the best ways to look for relationships between species richness and oceanographic conditions is to analyze more than one factor at the same time, and also to study marine taxa with the potential to occupy a variety of niches, that are well-known taxonomically, as well as those for which reliable information on their natural history is available.

Sea stars (Echinodermata: Asteroidea) are invertebrates of great importance in marine ecosystems because, among other things, some act as key species due to their predatory activities (Menge 1982). Asteroids of the Gulf of California are taxonomically well known (Caso 1986, Cintra-Buenrostro 2001); however, to date, distribution patterns of the group have not been explored in the detail they deserve. The objectives of this study were: a) to correlate species richness of shallow water (< 200 m deep) sea stars (total and for four feeding guilds) with several key oceanographic factors along the Gulf of California, México, and b) to predict species richness of Asteroidea using multiple regressions, which will explain the distribution patterns observed. We discovered that total richness, as well as richness of feeding guilds display a latitudinal attenuation pattern, and richness of each guild of Asteroidea is correlated to certain oceanographic factors, of which nitrates, temperature and productivity were the most important. All the multiple regression models applied were significant and highly precise. We conclude that species richness of sea stars of the Gulf of California is closely related to oceanographic conditions, and it can be estimated efficiently from regional information on properties of the marine environment.

General oceanographic setting of the study area

The Gulf of California (Fig. 1) is a semi-closed sea about 1 000 km long and 150 km wide (Brusca 1980), and a unique evaporation basin in the Eastern Pacific for being located between two arid areas of western México (Robles and Marinone 1987). Circulation in the Gulf is complex because of the combination of diverse oceanic factors such as winds, tides, remote effects, and local physiography (very shallow areas in the northern Gulf and deep in the south; Lavin et al. 1997). Another relevant characteristic of this inner sea is its high productivity, which in certain areas (at 28-29° N) is comparable to that of the western coast of Africa and the Pacific side of the Baja California Peninsula (Zeitzschel 1969, Millán-Núñez & Lara-Lara 1995). The exceptional values of chlorophyll are a result of fluxes of deep, nutrient-rich water from local upwelling and tide flows (Alvarez-Borrego et al. 1978, Valdez-Holguín and Lara-Lara 1987). Mean sea surface temperature in the Gulf of California increases southwards (Soto-Madrones et al. 1999) and varies significantly during the year; it is as low as 14º and 20ºC during February, and as high as 27º and 31ºC in August (at latitudes 30º and 24º N, respectively). Nutrient profiles show a well-developed cline within the euphotic zone, with surface concentrations increasing from the southern to the center of the Gulf (Alvarez-Borrego et al. 1978, Lara-Lara and Valdez-Holguín 1988), or along the coast (Zuria-Jordán et al. 1995). Surface chlorophyll a concentration is patchy and has low values in the south and it is much higher northwards, especially in the northern Gulf and the Midriff Islands (Gendrop et al. 1978, Lara-Lara et al. 1993, Valdez-Holguín et al. 1995).

MATERIALS AND METHODS

This study is based on a taxonomic revision of all nominal species of Asteroidea that have been reported from shallow waters (0-200 m) of the Gulf of California (Cintra-Buenrostro 2001). Once the status of all species and their synonyms was defined, we conducted an exhaustive literature search to determine the distribution of the species, and complemented
the information with revision of specimens from the Laboratorio de Sistemática y Ecología de Equinodermos of the Instituto de Ciencias del Mar y Limnología of the Universidad Nacional Autónoma de México (México City, México), and the Museo de Historia Natural and the Laboratorio de Ecología del BENTOS, Universidad Autónoma de Baja California Sur (La Paz, México). In addition, we obtained further material from over 20 locations of the Gulf of California (from 23-28° N), and made observations of feeding mode of the species in the field. Species were sorted according to latitudinal degree as well as according to five feeding guilds: generalist carnivores, predators of colonial organisms (sponges, bryozoans, corals), predators of small mobile invertebrates (mollusks, crustaceans), detritivores, and planktivores (after Jangoux 1982, Blake 1990). Latitudinal species distributions were put jointly with several environmental parameters that are known to determine species richness of marine organisms.

Environmental parameters here utilised were: a) continental shelf area (km²) between 0-100 m, 100-200 m and 0-200 m; b) average thermocline depth (m); mean, maximum, minimum and range; c) surface, 60 m, and 125 m temperature (°C); d) nutrient concentrations (µM NO₃, PO₄³⁻, and SiO₄) from 0 to 200 m (pooled); e) integrated productivity (gC/m²/d) from 0 to 200 m; and f) surface pigments (mg/m³), for which median value was also used. References are presented in Appendix 1. Although, other factors (e.g. salinity, sediment type, and particular conditions in the islands) influence distribution of several organisms, including echinoderms (Thomson and Gilligan 1983, Blake 1990) they were not considered in the numerical analyses due to the lack of enough quantitative information for the scale and level used in the present study.

The first step of the numerical analyses was to calculate a correlation coefficient between sea star richness and values of the oceanographic variables, for all sections of 1° of latitude. Although, a variety of multivariate statistical techniques (e.g. niche partitioning, PCA) could be used to explain species richness based on the analysed parameters, our goal was to predict it, and thus we decided to perform correlation and regression analyses, the former allowed to detect autocorrelated variables while the second helped to eliminate them. The likelihood of introducing highly correlated terms and generating erroneous estimates of regression coefficients due to multicollinearity increased with the inclusion of several variables in our analyses. Thus, ridge regression was performed to identify and eliminate variables generating unstable regression coefficients (Cornell and Karlson 1996). Between the correlation coefficients (Spearman and Pearson) used, we selected the second because similarity of correlations, but most important due to robustness of parametric over non-parametric statistics. A Kolmogorov-Smirnov test was used to test data normality. Once confirmed, Pearson correlation was applied to total species richness and to richness of four of the five feeding guilds given that there is just one planktivore species. Then, we applied three multiple model II (α = 0.05, without constant use) regression models to check which factors were most related to richness:

a) Model I. All variables were considered, but their relevance to species richness was determined with a forward ridge stepwise regression, an appropriate model when analysis is applied to similar variables (e.g., mean and minimum temperature in a site), and thus the problem of multicollinearity exists (Sokal and Rohlf 1997). The stepwise routine is a way to optimize and select factors, which explain most of the variance of the response variable (Zar 1996).

b) Model II. Only average values of the main oceanographic parameters were included in the regression of species richness, and for the multiple regression models we selected only those that were significantly correlated to species richness, according with the Pearson coefficient. This approach was followed to establish an equation based
on the usual way to report information in biogeographic studies.

c) Model III. Only total shelf area (0 to - 200 m) and surface temperature values were considered. Both factors were selected because they are the most common parameters used to explain species distribution and diversity patterns in the ocean (Briggs 1974, Brusca and Wallerstein 1979, Rosen 1988a, Bernard et al. 1991).

RESULTS

A total of 47 species of Asteroidea, belonging to 17 families and 28 genera, have been registered in the Gulf of California. These species represent five feeding modes: a) generalist carnivores (forcipulatids, n = 6), b) predators of colonial organisms (echinasterids and Acanthaster planci (Linnaeus,1758; n = 8), c) predators of small invertebrates (paxillosids, n = 16), d) detritivores (most valvatids, n = 15), and e) planktivores (brisingids, n = 1). There was a southward trend of increasing total species richness, and richness of all feeding groups (Fig. 1 and 2), reaching a species richness peak in the southernmost latitudinal section (42 species, Fig. 1).

The results of the multiple stepwise regressions will be presented in order.

Total species richness, Model I

A total of 21 oceanographic variables were significantly related to asteroid species richness in the Gulf of California (Table 1). From these, the stepwise procedure selected only two: maximum concentration of nitrates (MaxNO$_3$ in µM) and surface temperature range (STr in ºC) (Equation 1). The regression line is shown in Fig. 3a.

Equation 1:

Total richness = - 1.22 (STr) + 3.04 (MaxNO$_3$)

$\text{r}^2 = 0.96$, $p < 0.001$

Total species richness, Model II

Highest correlation values among total species richness and average values of the oceanographic factors came from temperature at 60 m (AvgT2 in ºC), temperature at 125 m (AvgT3 in ºC), silicate concentration (AvgSiO$_4$...
in µM), weighted averages of surface photosynthetic pigments (Avgpigw in mg/m³), and integrated productivity (Avgprod in gC/m²/d) (Equation 2 and Fig. 3b).

Equation 2:

\[
\text{Total richness} = 2.11 \text{(Avg}T2) + 2.43 \text{(Avg}T3) - 1.32 \text{(AvgSiO}_4\text{)} + 2.04 \text{(Avgpigw)} - 12.75 \text{(Avgprod)}
\]

\[r^2 = 0.96, p < 0.001\]

Total species richness, Model III

Ridge regression among total species richness, average surface temperature (AvgST in °C) and total continental shelf area (TCSA in km²), produced equation 3; the estimated species richness from this equation appears in Fig. 3c. This model was significant even when neither of these oceanographic variables by itself showed a significant correlation with the total richness (Table 1).

Equation 3:

\[
\text{Total richness} = 1.79 \text{(AvgST)} - 0.001 \text{(TCSA)}
\]

\[r^2 = 0.90, p < 0.001\]

As clearly observed in the graphics and the statistical results, a reduction in the number of variables in the models makes them less precise. However, in all cases ridge regressions were significant and they explain more than 90% of the variance, which makes them useful to predict species richness at each degree of latitude in the Gulf of California.

Generalist carnivores, Model I

The stepwise analysis showed that the best factors to model richness were: average temperature at 60 m (AvgT2 in °C), maximum value of nitrates (MaxNO₃ in µM), and continental shelf area at 100 m (CSA100 in km²) (Equation 4). The regression line is shown in Fig. 4a.

Equation 4:

\[
\text{Generalist carnivore richness} = 0.13 \text{(Avg}T2) + 0.05 \text{(MaxNO}_3\text{)} - 0.0001 \text{(CSA100)}
\]

\[r^2 = 0.96, p < 0.001\]
Generalist carnivores, Model II

From the correlation among species richness of generalist carnivore sea stars and the average values of oceanographic factors, the following variables were selected: temperature at 60 m (AvgT2 in °C), and nitrate concentration (AvgNO$_3$ in µM). Equation 5 was obtained and estimated richness appears in Fig. 4b.

Equation 5:

Generalist carnivores richness = - 0.04 (AvgT2) + 0.32 (AvgNO$_3$)

$R^2 = 0.96, p < 0.001$

Generalist carnivores, Model III

Ridge regression analysis among species richness of generalist carnivores, average surface temperature (AvgST in °C), and total continental shelf area (TCSA in km2) resulted in equation 6. The estimated richness from this equation is shown in Fig. 4c. Again, this model was proposed even when neither of the two oceanographic variables showed a significant correlation with the total richness (Table 2).
Equation 6:

Generalist carnivores richness = 0.18 (AvgST) - 0.0001 (TCSA)
$r^2 = 0.93$, $p < 0.001$

Predators of colonial organisms, Model I

The stepwise analysis showed that the best factors to model richness were: maximum value of nitrates (MaxNO$_3^-$ in µM) and surface temperature range (STr in °C) (Equation 7). The regression line with those components is shown in Fig. 5a.

Equation 7:

Richness of predators of colonial organisms = -1.7 (STr) - 11.63 (MaxNO$_3^-$)
$r^2 = 0.96$, $p < 0.001$

Predators of colonial organisms, Model II

From the correlation among species richness of predatory sea stars on colonial organisms, and the average values of the oceanographic factors, the following variables were selected: temperature at 60 m (AvgT2 in °C), temperature at 125 m (AvgT3 in °C), silicate concentration (AvgSiO$_4$ in µM), and integrated productivity (Avgprod in gC/m2/d). Equation 8 was obtained and the estimated richness appears in Fig. 5b.

TABLE 2

<table>
<thead>
<tr>
<th>Variable</th>
<th>n</th>
<th>r</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum temperature at 60 m</td>
<td>9</td>
<td>-0.80</td>
<td>0.009</td>
</tr>
<tr>
<td>Mean temperature at 60 m</td>
<td>9</td>
<td>-0.90</td>
<td>0.001</td>
</tr>
<tr>
<td>Maximum concentration of nitrates</td>
<td>8</td>
<td>0.89</td>
<td>0.003</td>
</tr>
<tr>
<td>Mean concentration of nitrates</td>
<td>8</td>
<td>0.82</td>
<td>0.010</td>
</tr>
<tr>
<td>Minimum concentration of surface photosynthetic pigments</td>
<td>9</td>
<td>-0.94</td>
<td>0.0001</td>
</tr>
<tr>
<td>Minimum integrated productivity</td>
<td>9</td>
<td>-0.80</td>
<td>0.009</td>
</tr>
</tbody>
</table>

1 Only significant relations where $r > 0.80$ are shown, n = degrees of latitude.

Fig. 5. Model I Stepwise (a), Model II (b) and Model III (c) for colonial organisms predator sea star species richness.

Fig. 5. Modelo I Stepwise (a), Modelo II (b) y Modelo III (c) para la riqueza de especies de estrellas de mar que depredan en organismos coloniales.
Equation 8:

\[
\text{Richness of predators of colonial organisms} = 0.68 (\text{AvgT2}) - 0.29 (\text{AvgT3}) - 0.11 (\text{AvgSiO}_4) - 1.01 (\text{Avgprod})
\]

\[r^2 = 0.90, \, p < 0.001\]

Predators of colonial organisms, Model III

Ridge regression analysis among species richness of predatory asteroids of colonial organisms, average surface temperature (AvgST in ºC), and total continental shelf area (TCSA in km²) produced equation 9. The estimated richness from this equation is shown in Fig. 5c. Again, this model was significant even when neither of the two oceanographic variables showed a significant correlation with the total richness (Table 3).

Equation 9:

\[
\text{Richness of predators of colonial organisms} = 0.25 (\text{AvgST}) - 0.0002 (\text{TCSA})
\]

\[r^2 = 0.90, \, p < 0.001\]

Predators of small invertebrates, Model I

The stepwise analysis was significant and proposed that the factors that better explain the variance in species richness were: nitrate range \((\text{NO}_3^- \text{r in } \mu\text{M})\) and minimum of integrated productivity \((\text{Minprod in } \text{gC/m}^2/\text{d})\) (Equation 10). The regression line with those components is shown in Fig. 6a.

Equation 10:

\[
\text{Richness of predators of small invertebrates} = 0.89 (\text{NO}_3^- \text{r}) - 9.27 (\text{Minprod})
\]

\[r^2 = 0.96, \, p < 0.001\]

Predators of small invertebrates, Model II

From the correlation among species richness of predatory sea stars on small invertebrates, and the average values of the oceanographic factors, the following variables were selected: temperature at 60 m (AvgT2 in ºC), temperature at 125 m (AvgT3 in ºC), silicate concentration \((\text{AvgSiO}_4 \text{ in } \mu\text{M})\), weighted average values of surface photosynthetic pigments \((\text{Avgpigw in } \text{mg/m}^3)\), and integrated productivity \((\text{Avgprod in } \text{gC/m}^2/\text{d})\). Equation 11 was obtained and the estimated richness appears in Fig. 6b.

Equation 11:

\[
\begin{align*}
\text{Richness of predators of small invertebrates} &= 0.92 (\text{AvgT2}) + 0.51 (\text{AvgT3}) - 0.39 (\text{AvgSiO}_4) + 0.87 (\text{Avgpigw}) - 5.44 (\text{Avgprod}) \\
&= 0.96, \, p < 0.001
\end{align*}
\]

Predators of small invertebrates, Model III

Ridge regression analysis among species richness of predatory asteroids of small invertebrates and the analyzed variables \(n = \text{degrees of latitude}\). Table 3 shows the simple linear correlation values between species richness of predatory asteroids of small invertebrates and the analyzed variables.

<table>
<thead>
<tr>
<th>Variable</th>
<th>(n)</th>
<th>(r)</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum surface temperature</td>
<td>9</td>
<td>0.81</td>
<td>0.009</td>
</tr>
<tr>
<td>Range of surface temperature</td>
<td>9</td>
<td>-0.86</td>
<td>0.003</td>
</tr>
<tr>
<td>Maximum temperature at 60 m</td>
<td>9</td>
<td>-0.88</td>
<td>0.002</td>
</tr>
<tr>
<td>Range of temperature at 60 m</td>
<td>9</td>
<td>-0.89</td>
<td>0.001</td>
</tr>
<tr>
<td>Minimum temperature at 125 m</td>
<td>8</td>
<td>-1.0</td>
<td>0</td>
</tr>
<tr>
<td>Maximum temperature at 125 m</td>
<td>8</td>
<td>-0.85</td>
<td>0.008</td>
</tr>
<tr>
<td>Mean temperature at 125 m</td>
<td>8</td>
<td>-0.88</td>
<td>0.004</td>
</tr>
<tr>
<td>Minimum integrated productivity</td>
<td>9</td>
<td>-0.84</td>
<td>0.005</td>
</tr>
<tr>
<td>Mean integrated productivity</td>
<td>9</td>
<td>-0.80</td>
<td>0.009</td>
</tr>
</tbody>
</table>

Only significant relations where \(r > 0.80\) are shown, \(n = \text{degrees of latitude}\).
invertebrates, average surface temperature (AvgST in °C), and total continental shelf area (TCSA in km²) produced equation 12. Estimated values of richness are shown in Fig. 6c. This model was proposed even when none of the two oceanographic variables showed a significant correlation with the total richness (Table 4), and it was significant this time.

Equation 12:

Richness of predators of small invertebrates = 0.61 (AvgST) - 0.0004 (TCSA)

\[r^2 = 0.90, p < 0.001 \]

Detritivores, Model I

The stepwise analysis showed that the best factors to model richness were: maximum value of nitrates (MaxNO\textsubscript{3}), and minimum integrated productivity (Minprod) (Equation 12).
The regression line calculated using those components is shown in Fig. 7a.

Equation 13:

\[
\text{Detritivore richness} = 1.3 \text{(MaxNO}_3\text{)} - 6.94 \text{(Minprod)}
\]

\[r^2 = 0.96, p < 0.001\]

Detritivores, Model II

From the correlation among species richness of detritivore sea stars and the average values of the oceanographic factors, the following variables were selected: temperature at 60 m (AvgT2 in °C), temperature at 125 m (AvgT3 in °C), silicate concentration (AvgSiO$_4$ in µM), weighted average values of surface photosynthetic pigments (Avgpigw in mg/m3), and integrated productivity (Avgprod in gC/m2/d). Equation 14 was obtained and the estimated richness appears in Fig. 7b.

Equation 14:

\[
\text{Detritivore richness} = 0.88 \text{(AvgT2)} + 0.9 \text{(AvgT3)} - 0.53 \text{(AvgSiO}_4\text{)} + 0.34 \text{(Avgpigw)} - 3.07 \text{(Avgprod)}
\]

\[r^2 = 0.94, p < 0.001\]

Detritivores, Model III

Ridge regression among detritivores species richness, average surface temperature (AvgST in °C), and total continental shelf area (TCSA in km2) produced equation 15. The estimated richness from this equation appears in Fig. 7c. This model was significant but none of the oceanographic variables analyzed individually showed a significant correlation with the total richness (Table 5).

Equation 15:

\[
\text{Detritivore richness} = 0.73 \text{(AvgST)} - 0.006 \text{(TCSA)}
\]

\[r^2 = 0.90, p < 0.001\]

DISCUSSION

We will start this section by analyzing each kind of multiple regression model applied. Model I (Fig. 3a, 4a, 5a, 6a, 7a), is considered the most complete to explain the relationships among species richness and oceanographic factors since it considered all of them, and selected those which best explained richness patterns based on the amount of variance explained and test robustness. Model II (Fig. 3b, 4b, 5b, 6b, 7b) that included only mean values of all analyzed factors, is less precise than the previous one given the reduction in tested variables, which led to a decrease in explained variance;
however, it is still very accurate. Finally Model III (Fig. 3c, 4c, 5c, 6c, 7c), which included only average surface temperature (°C) and continental shelf (km²) from 0-200 m depth, was the least precise probably because these factors taken independently do not relate much to sea star richness (Tables 1-5). Thus, the interaction of oceanographic factors must be considered when relationships among species richness and oceanographic factors are to be estimated. Nevertheless, we calculated the regressions because average surface temperature and total continental shelf area are commonly used as proxies of marine organism distributions (Briggs 1974, Brusca and Wallerstein 1979, Thomson and Gilligan 1983, Wickstein 1989, Hendrickx 1995). The good results obtained in the presented numerical analyses nevertheless have to be taken cautiously because the utilised scale is rather coarse (1° in latitude). Consequently their biological interpretation is still tentative until more detailed studies and other statistical analyses are conducted to know in much more detail the oceanographic setting of the Gulf of California (specially in coastal areas), and the distribution and richness of Asteroidea.

The initial observation from the Pearson correlation analyses is that most of the oceanographic parameters were inversely correlated to species richness of sea stars in the Gulf of California (Tables 1-5). This may indicate that, individually, they may act primarily as limiting factors controlling species number in the Gulf, and a situation like that would be expected in a transitional zone like the Gulf of California, which presents strong seasonal changes in environmental conditions. The relevance of limiting factors shows that local species richness in the Gulf (at scale of 1° in latitude) is apparently not proportional to regional richness, and thus that a certain “saturation” of species richness may occur in the study area (Cornell 1993, Loreau 2000).

Detailed discussion of all tested oceanographic factors is beyond the scope of this paper. Here we will focus only on the major ones as revealed by the ridge and stepwise models: surface temperature, nitrate concentration and integrated productivity. Surface temperature range was a key factor in determining total richness and richness of predators on colonial organisms (Eqs. 1 and 7). The coefficient of the regression was negative, which means that the smaller the variation on surface temperature, the greater the number of species. Temperature has been considered as a direct determinant in the distribution of numerous animal and plant taxa (Briggs 1974, Brusca and Wallerstein 1979, Rosen 1988a, Bernard et al. 1991), which is expected because it has direct effects on the physiology and reproduction of the organisms (Lawrence and Lane 1982, Ross-Elbington 1982, Lawrence 1987). Consequently, extreme changes in temperature cause effects at both population and assemblage levels, as it occurred when the 1982-83

<table>
<thead>
<tr>
<th>Variable</th>
<th>n</th>
<th>r</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum temperature at 60 m</td>
<td>9</td>
<td>-0.90</td>
<td>0.001</td>
</tr>
<tr>
<td>Temperature range at 60 m</td>
<td>9</td>
<td>-0.90</td>
<td>0.001</td>
</tr>
<tr>
<td>Mean temperature at 60 m</td>
<td>9</td>
<td>-0.86</td>
<td>0.003</td>
</tr>
<tr>
<td>Minimum temperature at 125 m</td>
<td>8</td>
<td>-0.87</td>
<td>0.005</td>
</tr>
<tr>
<td>Maximum temperature at 125 m</td>
<td>8</td>
<td>-0.81</td>
<td>0.010</td>
</tr>
<tr>
<td>Mean temperature at 125 m</td>
<td>8</td>
<td>-0.87</td>
<td>0.005</td>
</tr>
<tr>
<td>Maximum nitrate concentration</td>
<td>8</td>
<td>0.87</td>
<td>0.005</td>
</tr>
<tr>
<td>Maximum silicate concentration</td>
<td>8</td>
<td>-0.85</td>
<td>0.008</td>
</tr>
<tr>
<td>Range of silicate concentration</td>
<td>8</td>
<td>-0.82</td>
<td>0.010</td>
</tr>
<tr>
<td>Mean silicate concentration</td>
<td>8</td>
<td>-0.85</td>
<td>0.008</td>
</tr>
<tr>
<td>Minimum concentration of photosynthetic pigments</td>
<td>9</td>
<td>-0.87</td>
<td>0.002</td>
</tr>
<tr>
<td>Minimum integrated productivity</td>
<td>9</td>
<td>-0.94</td>
<td>0.0002</td>
</tr>
<tr>
<td>Mean integrated productivity</td>
<td>9</td>
<td>-0.83</td>
<td>0.006</td>
</tr>
</tbody>
</table>

1 Only significant relations where r > 0.80 are shown, n = degrees of latitude.
and 1997-98 El Niño-Southern Oscillation impacted the western coast of the Americas, and other areas of the Pacific Ocean (Glynn 1988, Goreau et al. 2000). In the case of asteroids, changes in temperature affect locomotory activity, feeding, and metabolic rates, and most importantly, severely diminishes their reproductive output (Lawrence 1987).

Surprisingly, mean sea surface temperature did not return as relevant to determine species richness (total or of any feeding guild), although mean temperature at 60 m appeared in the stepwise model for generalist carnivores (Fig. 4a). As mentioned, temperature has been traditionally considered a key factor in the distribution of marine taxa, however, the relations were not statistically tested because most of the studies were based exclusively on surface measurements, or their relevance was not compared against that of other oceanographic factors, maybe because of data accessibility. One good explanation of our results is that as asteroids have wide bathymetric distribution ranges in the Gulf of California (with depth distribution midpoints usually around 70-120 m; Maluf 1988a, Cintra-Buenrostro 1997), most populations are not under the influence of the surface temperature, and consequently species richness is not much affected by this parameter. The relative independence may result from the fact that thermocline depth in the Gulf of California is very shallow, and rarely exceeds 50 m depth (Gendrop et al. 1978). On the other hand, very few asteroid species live in the intertidal or the very shallow subtidal, and although in this case surface temperature is crucial, the number of species that occupy this kind of habitats is low and consequently they did not affect the general patterns observed. The presented information points out the need to consider that all oceanographic factors change with depth, when conducting biogeographic analyses of marine taxa. Thus, discussion based only on surface data have to be taken with a grain of salt!

In the multiple regression models, nitrates were the foremost factor of importance. This result is interesting for two reasons; first, post-metamorphic sea stars cannot obtain this nutrient directly, but only in particulate form (Bamford 1982, Lawrence and Lane 1982), although they are able to absorb amino acids from the environment by epidermic absorption and by intermittent oral feeding (Bamford 1982). On the other hand, nitrates are usually low in concentration in the tropical and subtropical Eastern Pacific region especially in areas of very high sea temperature such as southern México (less than 1 µM). However, the level increases remarkably in upwelling areas (Gulf of Papagayo and Tehuantepec) and at the equator or nearby areas (2-6 µM; Anonymous 1998). In the Gulf of California nitrates are high, especially north of 26° N (Anonymous 1998), and Alvarez-Borrego et al. (1978) mentioned that their concentration is also high in upwelling areas of the Gulf. Nutrient availability in the water is of uttermost importance for larval and juvenile forms of the sea stars, which consume dissolved and particulate organic matter in the water column. Also, juvenile individuals depend on proteins, amino acids, and other nitrogenated material deposited in the detritus (Jangoux 1982). We suggest that nitrates presented a positive relationship with richness because they favor the establishment of species benefitting survival of individuals in their initial development stages. This hypothesis may also help to explain why the richest zones in echinoderm species (including sea stars) in the Eastern Tropical Pacific are located in upwelling areas as California and the West coast of Baja California (Maluf 1988a, b).

Integrated productivity was the third important factor in determining the species richness. Although it was only relevant for consumers of small invertebrates and detritivore sea stars (Eq. 10 and 13). This factor represents the available carbon per unit of area per unit of time (Gaxiola-Castro and Alvarez-Borrego 1986), which can be incorporated by heterotrophs into the trophic web, and is expected that as productivity increases (and consequently more plant biomass exists), a larger number of individuals and species of heterotrophs can be supported by the system (Begon et al. 1996). Sea stars rarely prey on phytoplankton...
(there is only one species of this kind in the Gulf, *Astrolirus panamensis* (Ludwig, 1905), which inhabits only the southernmost portion of the Gulf up to 24° N; Cintra-Buenrostro 1997). However, they consume organic material deposited in the sediments (detritivores) or prey on organisms that use plankton as food, for example, consumers of colonial species (sponges, bryozoans, etc.) and on small invertebrates like bivalves (Jangoux 1982). There was a negative relationship between minimum integrated productivity and richness of either detritivore or consumers of small invertebrates sea stars in the Gulf of California. In other words, species richness was higher in areas where productivity can be extremely low during the year (independently of the mean or maximum value). A possible explanation for this pattern is that it is an artifact resulting from the relation of richness and other factors like temperature, because the lowest values of productivity occur in the southern Gulf (Santamaría del Angel et al. 1994). On the other hand, high productivity zones also have elevated densities of pelagic predators (Hendrickx 1995), which can cause a decrease in asteroid larval survivorship, and consequently a reduction on their richness. This finding has no easy explanation and needs to be further tested. However, it is relevant to notice that the same effect (more productivity, less richness) has also been observed in the Gulf of California brachyurans and echinoids (Correa-Sandoval and Carvacho-Bravo 1992, Cintra-Buenrostro and Reyes Bonilla, in prep.), an indication that our results are not so exceptional for this region.

In this study, perhaps the least expected result was the exclusion of the continental shelf area as an important factor in the determination of total sea star richness in the Gulf, because theoretically the size of an area is indicative of habitat variability (Rosenzweig 1997). This does not always happen (Brown 1988, Rosen 1988b, Hallam 1994, O’Hara and Poore 2000); in the present study we found that in the northern Gulf (where more shelf area is available) less species were present. Probably, as most shallow areas of this region have sandy bottoms (Byrne and Emery 1960, Van Andel 1964) they may present a low variety of habitats and consequently, low species richness. It is also important to notice that the northern Gulf is a very dynamic area and presents strong annual changes in salinity, temperature and nutrients (Lavín et al. 1997). All these characteristics must hamper the existence of sea stars, which are susceptible to temperature changes and substrate type (Thanadar 1989, Blake 1990) and produce the lack of relation between these variables.

O’Hara and Poore (2000) is the only other echinoderms study, that we are aware of, in which a test for certain oceanographic (mainly temperature), physiographic (area of continental shelf), and historic factors was attempted. Thus, ours is the first American paper to test the relevance of oceanographic traits on species richness, and our results may be considered tentative, particularly when alternative analytical methods can and will be tested. However, they are encouraging and allow us to conclude that sea star species richness of the Gulf of California (total and by each of the four feeding guilds presented) is closely related to several oceanographic factors, most importantly nitrate concentration, productivity and surface temperature range. This situation permits the construction of multiple regression models that were highly accurate to predict local species richness, and which may eventually be used to estimate changes of species richness of this marine group, according to predictions from global change models.

ACKNOWLEDGMENTS

Literature for the taxonomic review was provided in part by G. Hendler (Los Angeles County Museum of Natural History, Los Angeles), C. Ahearn (Smithsonian Institution, Washington D.C.) and F. Solís Marín (Instituto de Ciencias del Mar y Limnología, UNAM, México City). Michael Foster and E. Burton (Moss Landing Marine Laboratories, Moss Landing) reviewed an earlier version of the manuscript; and R. Brusca (Arizona-Sonora
Desert Museum, Tucson), K. Rowell and T. Taylor (University of Arizona, Tucson) corrected for our language barrier. The manuscript also benefited from the comments of R. Brusca, M. Foster, E. Santamaria del Angel and three anonymous reviewers, which not necessarily agree upon all our results or techniques for which we take full responsibility.

RESUMEN

La riqueza específica es uno de los mejores indicadores para estimar biodiversidad. Sin embargo, para los ambientes marinos existen pocas investigaciones que contrastan los patrones de biodiversidad con las condiciones ambientales. Los objetivos del presente estudio fueron determinar la correlación existente entre la riqueza específica de estrellas de mar de aguas someras (< 200 m de profundidad) y diversos factores oceanográficos claves en el Golfo de California, México; y predecir la riqueza específica de Asteroidea mediante el uso de regresiones múltiples. Para el análisis se dividió al golfo en nueve secciones de un grado de latitud (desde los 23-31° N), y para cada sección obtuvimos la siguiente información: área de plataforma continental disponible (100 y 200 m); intervalo y promedio de temperatura a tres profundidades (0, 60, y 120 m); profundidad de la termoclina; concentración superficial de nutrientes (nitratos, fosfatos y silicatos); concentración superficial de pigmentos fotosintéticos; y productividad integrada. La riqueza específica de asteroideos por grado de latitud fue estimada con datos provenientes de literatura, trabajo de campo y colecciones museográficas. Cada especie fue asignada a uno de los siguientes grupos tróficos: depredadores de invertebrados pequeños (I), detritivoros (D), depredadores de organismos coloniales (C), carnívoros generalistas (G), y planctotróficos (P). Existen 47 especies de asteroideos de aguas someras en el Golfo de California (16 I, 15 D, ocho C, seis G, uno P, y uno indeterminado). Tanto la riqueza específica total como la riqueza por grupo trófico mostraron una fuerte atenuación latitudinal y fueron mayores en las partes sureñas del golfo; área con estrecha plataforma continental, alta temperatura, y baja concentración de nutrientes. La temperatura, concentración de nitratos y productividad integrada fueron los parámetros oceanográficos que mostraron mayor frecuencia en las correlaciones con la riqueza específica de cada grupo. Se observó una correlación negativa en todos los casos entre la riqueza específica y los nutrientes, así como con los pigmentos superficiales, lo que sugiere que ambientes con alta productividad limitan la diversidad de asteroideos en la zona. Por último, todos los modelos de regresión postulados para determinar la riqueza específica de asteroideos usando datos oceanográficos fueron significativos y tuvieron un nivel de precisión elevado.

En conclusión, la riqueza específica de Asteroidea en el Golfo de California está relacionada con las condiciones oceanográficas y puede ser estimada con la información oceanográfica regional disponible.

REFERENCES

ELECTRONIC REFERENCES

APPENDIX 1

References for oceanographic variables used to generate data matrix.

Santamaría del Angel, E., S. Alvarez-Borrego & F.E. Müller-Karger. 1994. Gulf of California biogeo-

