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Abstract

Here we present a phylogenetic hypothesis for the New World suboscine radiation, based on a dataset comprising of 219
terminal taxa and five nuclear molecular markers (ca. 6300 bp). We also estimate ages of the main cladesin this radiation.
Thisstudy corroborates many of the recent insightsinto the phylogenetic rel ationships of New World suboscines. It further
clarifies a number of cases for which previous studies have been inconclusive, such as the rel ationships of Conopophagi-
dae, Melanopareiidae and Tityridae. We find aremarkable difference in age of the initial divergence eventsin Furnariida
and Tyrannida. The deepest branchesin Furnariida are of Eocene age, whereas the extant lineages of Tyrannida have their
origininthe Oligocene. Approximately half of the New World suboscine species are harboured in 5 large clades that start-
ed to diversify around the Mid Miocene Climatic Optimum (16-12 Mya). Based on our phylogenetic results we propose
arevised classification of the New World suboscines. We also erect new family or subfamily level taxafor four small and
isolated clades: Berlepschiinae, Pipritidae, Tachurididae and Muscigrallinae.
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Introduction

With more than 1200 extant species, the New World suboscines (NWS) are one of the largest endemic vertebrate
radiations on the South American continent. Phylogenetic rel ationships are comparatively well studied. The studies
with the most comprehensive taxon sampling have either relied on the RAG1 and RAG-2 protein coding regions
(Moyle et al. 2009; Tello et al. 2009) or nuclear introns, primarily myoglobin intron 1, G3PDH intron 11 and ODC
introns 6 and 7 (e.g. Irestedt et al. 2009; Ohlson et al. 2008), in some cases complemented by mitochondrial DNA.
These two sets of molecular markers have yielded phylogenetic hypotheses that are generally congruent but also
differ at several points. Partially conflicting tree topologies have previously been observed between the RAG genes
and nuclear introns (Irestedt & Ohlson 2008) or between RAG genes and other nuclear protein-coding markers
(e.g. ZENK, Treplin et al. 2008).

The last decade has seen a drastic overturning of the traditional view of systematic relationships in nearly
every larger group of passerines. However, adjustments in classification often lag, creating a discrepancy between
classification and current hypotheses of phylogenetic relationships. Moyle et al. (2009) and Tello et al. (2009)
proposed severa changes to the classification of Furnariida and Tyrannida respectively, whereas the studies by
Irestedt et al. (2009) and Ohlson et al. (2008) have not been synthesized into a comprehensive proposal for a new
classification. At this point we have a sufficiently clear picture of the NWS radiation to propose a consensus
classification that reflects the results of these combined analyses. The NWS are among the most comprehensively
sampled bird radiations and there are no taxa left unstudied that are likely to have any impact on classification at
the subfamily level. A few taxa of uncertain affinities at the generic level till remain to be included in molecular
studies and afew large radiations of rather recent origin remain to be disentangled to settle generic limits.

In this study we aim to explore the effects of increased data on the topology of the NWS tree. We compare the
phylogenies obtained using RAG-1 and RAG-2 with those obtained from intron data (G3PDH intron 11,
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Myoglobin intron 2 and ODC introns 6 and 7) and we analyse a combined dataset of these five markers for 219
species of NWS from a number of studies by our own research group and others. Through this enlarged dataset we
aim to clarify uncertain phylogenetic relationships and propose a new classification that refl ects these relationships.
Thisisthe first study to cover a broad taxon sampling across the entire New World suboscine radiation, including
roughly 70 % of the genera, following the Gill & Donsker (2012).

Another important aim of this paper isto explore the temporal frames of diversification within the NWS. Age
estimates of divergences have been made in a number of studies (e.g. Brumfield et al. 2007; Ohlson et al. 2008;
Irestedt et al. 2009; Derryberry et al. 2011). However, as the focus of these studies has been on smaller clades
within the suboscine radiation, these estimates have never been synthesized to present an overview of the
chronology of New World suboscine diversification. Here we put stronger focus on this issue by estimating
divergence ages across the entire New World suboscine radiation.

Material and methods

Phylogenetic analyses. Together with co-workers we have generated phylogenetic hypotheses of NWS over
several years, using nuclear intron markers (e.g. Ericson et al. 2006; Ohlson et al. 2007; 2008; Irestedt et al. 2002,
2004, 2006, 2009). Other research groups have suggested phylogenetic hypotheses with somewhat different tree
topologies based on nuclear protein coding genes (Moyle et al. 2009; Tello et al. 2009). To achieve higher
confidence we therefore analysed a new dataset with sequence data for three nuclear introns (G3P intron 11,
Myoglobin intron 2 and ODC introns 6 and 7) together with the nuclear protein coding RAG-1 and RAG-2 genes
for representatives of all major radiations in the NWS, including representatives of ca. 70 % of all recognised
genera. By using sequence data downloaded from Genbank and some complementary sequencing we produced a
data set of 219 NWS species with complete sequence data for all five markers. In afew cases we used sequence
data from two closely related species. For computational efficiency, we excluded a few long, autapomorphic
insertions in the nuclear introns to produce an aligned dataset of ca 6300 bp, of which ca. 2300 are nuclear intron
data. Relationships within large and recently radiated clades, such as the Thamnophilidae, Synallaxinae and
Fluvicolinae, were not the prime focus of this study and these clades have not been exhaustively sampled in
relation to their species number.

We analysed the data under Maximum Likelihood (ML) and Bayesian Inference (BI) criteria using the
RAXML (Stamatakis et al. 2008) and MrBayes 3.1.1 (Ronquist & Huelsenbeck 2003) programs, respectively. We
used the AIC criterion in MrModeltest 2 (Nylander et al 2004) in conjunction with PAUP* to select substitution
models for each partition. For the partition by gene these were GTR+G for Myoglobin and G3PDH and GTR+G+I
for ODC, RAG-1 and RAG-2. When partitioning the two RAG genes by codon, GTR+G+| was selected for 1% and
2" positions and GTR+G for 3" positions.

The ML analyses were conducted in RAXML v7.2.6 (Stamatakis 2006), as implemented in RAXMLGUI v0.93
(Silvestro & Michalak 2010). We performed three ML analyses with ML search and thorough bootstrap for 1 run
and 1000 replicates under a GTR+G model. The dataset was partitioned by gene and branch lengths were
calculated independently for each partition.

Bayesian Inference analyses were run on the University of Oslo Bioportal (www.bioportal.uio.no). Individual
introns were treated as separate partitions in all analyses, but we tested different partition schemes for the RAG
data by partitioning either by gene (5 partitions), by codon positions (6 partitions) or by both gene and codon
position (9 partitions). We analysed the combined data set and also performed separate analyses on each gene
individually and on the RAG and nuclear intron data respectively. Several preliminary analyses were performed to
explore the effect of chain temperature on the mixing behaviour of the chains. We found that lowering the
temperature to 0.05 resulted in better mixing of the chains than the default value of 0.2. Partitions were unlinked to
alow independent parameter estimation for each one. Analyses were run for 50 M generations with 4
incrementally heated chains and trees sampled every 1000th generation. Trees saved before the target distribution
had been reached (the burn-in phase) were discarded and the final phylogenetic tree was estimated from 40000
trees from each run.

Divergence date estimates. Divergence dates were estimated in BEAST v1.5.3. No topological constraints
were enforced, each marker was treated as a separate partition, and substitution and clock models were unlinked
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between partitions, but tree models were kept linked. We used the same substitution models for each partition asin
the 5 partition Bayesian analysis (see above). An uncorrelated lognormal distribution was assumed for the
molecular clock model and a Yule process was assumed for the tree prior. As a calibration point we used the split of
Acanthisitta L afresnaye from the rest of the Passeriformes, as this has been linked to the geographical separation of
New Zealand from the remainder of Gondwanaland (Barker et al. 2002; Ericson et al. 2002). New Zealand is
estimated to have become isolated from mainland Gondwanaland at 8565 Mya (Ladiges & Cantrill 2007). To
account for the uncertainty in age estimates we set the age of the split between Acanthisitta and the rest of
Passeriformes as a normally distributed prior with the median at 76 Mya, and a standard deviation of 8 Ma
(quartiles 2.5% = 60.3 Mya, 5% = 62.8 Mya, 95% = 89,2 Mya, 97.5% = 91.7 Mya. All other priors were kept at
defaults values.

Results
Phylogenetic results

The Bayesian analyses of the concatenated dataset produced a well resolved tree with strong support for most
nodes (Fig. 1). We count a Bayesian posterior probability (PP) of 0,97 and above and a Maximum Likelihood
bootstrap value (ML) of 90 and above as strong support. Regarding the RAG and nuclear intron partition trees, the
RAG tree (Fig. 2) is nearly identical to the ones presented in Moyle et al. (2009) and Tello et al. (2009) and the
nuclear intron tree (Fig. 3) islargely congruent with previously published trees based on these nuclear introns (e.g.
Irestedt et al. 2002, 2004, 2009; Ohlson et al. 2007, 2008). Instances of conflicting signa between the nuclear
introns were few and without exception associated with short internodes. The Maximum Likelihood analyses of the
concatenated dataset produced a tree that was nearly identical to the Bayesian tree, but there are two instances in
which well supported relationships in the Bl analyses are not found in the ML tree. First, the basal divergencesin
Rhynchocyclidae differ between the Bl and the ML trees. The sister relationship of Cnipodectes P. L. Sclater &
Salvin and Taeniotriccus Berlepsch & Hartert to Todirostrinae is not recovered in the ML tree, but Cnipodectes/
Taeniotriccus is instead recovered as the sister clade to the remainder of Rhynchocyclidae, although with very low
support. Second, basal relationships in Tyranninae are slightly different in the ML tree, where Ramphotrigon G R.
Gray isthe sister to Myiarchini and Legatus P. L. Sclater sister to Tyrannini, with Attila Lesson placed as the sister
to the remainder of Tyranninae. ML support values are not very strong in this part of the tree.

A combination of RAG and nuclear intron data yielded stronger support for some relationships that were
unresolved by one or both of these datasets on their own. Among the more notable are the following: 1)
Conopophagidae and Melanopareiidae group with Thamnophilidae; 2) Gralariidae and Rhinocryptidae are
sequential sister groups to the remainder of Furnarioidea; 3) basal relationships within Furnariidae are generally
better resolved; 4) Platyrinchus Desmarest and Neopipo P. L. Sclater & Salvin form a strongly supported clade,
Platyrinchidae (also including Calyptura, see Ohlson et al. 2012) but still occupy an unresolved position at the base
of the Tyrant Flycatcher clade.

Poorly resolved nodes in the combined tree are mostly the result of low support in both partitions. In the
current study the following relationships are unresolved due to low support throughout: 1) between
Melanopareiidae, Conopophagidae and Thamnophilidae; 2) between Euchrepomidinae (previously Terenura; see
Bravo et al. 2012), Myrmornithinae and Thamnophilinag; 3) between Furnariinae, Philydorinae and Synallaxinae;
4) between Oxyruncidae, Onychorhynchidae (Onychorhynchini in Tello et al. 2009) and Tityridae, and 5) between
Hirundineinae, Elaeniinae and the remainder of Tyrannidae. Some unresolved nodes in the combined tree are
caused by conflicts between strongly supported topologies (i.e. with a PP of 0,97 or higher) in the RAG and nuclear
intron datasets. In the combined tree these signals cancel each other out, resulting in unresolved relationships. At
higher taxonomic levels this affects three regions of the NWS tree: 1) the position of Xenops Illiger in relation to
Dendrocolaptidae and Furnariidae; 2) the position of Cotingidae in relation to Pipridae and Tyrannoidea; 3) the
position of Piprites Cabanis, Platyrinchidae and Tachuris Lafresnaye in relation to Rhynchocyclidae and
Tyrannidae. These unresolved relationships are all located in regions of the tree with short internodes, especially
the onesin Tyrannida.

Divergence dates. In Fig. 4 we present a simplified chronogram for the NWS. The split between Furnariida
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and Tyrannida took place in the Early Eocene (55,5£8 Mya). The timing of subsegquent divergence events
proceeded quite differently in the two clades. In Furnariida, the initia divergencestook placein the middle and late
Eocene (44-37 Mya), with the extant families emerging in rapid succession. In Tyrannida, on the other hand, the
extant clades trace their origin back to the Oligocene (32-25 Mya). Subsequent diversification events show
common patterns with a number of small clades that date back to the early period, while five species-rich clades
began to diversify around or just after the mid-Miocene climatic optimum (16-12 Mya).
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Melanopareiidae, 4 sp
Conopophagidae, 11 sp
Thamnophilidae, 223 sp

Grallariidae, 51 sp

Rhinocryptidae, 56 sp

Formicariidae, 12 sp
Scleruridae, 17 sp
Xenopidae, 3 sp
Dendrocolaptidae, 54 sp

Furnariidae, 232 sp

Cotingidae, 66 sp

Pipridae, 51 sp

Oxyruncidae, 1sp
Onychomyncmdaa 9sp
Tityridae, 31 sp
Platyrinchidae, 9 sp
Pipritidae, 3 sp
Tachurididae, 1 sp
Rhynchocyclidas, 102 sp

Tyrannidae, 306 sp
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Discussion
Phylogeny and diver gence dates

The chronology of the New World suboscine radiation. Furnariida and Tyrannida diverged from each other
during the warm Paleogene “ greenhouse” period, when most of the South American continent experienced awarm
and equable climate allowing highly diverse forest floras with tropical plants to reach mid-latitudes in Patagonia
(Wilf et al. 2003). The estimated divergence date (Fig. 4) closely matches the Paleocene-Eocene transition (55,5
Mya) when the Earth experienced a brief “heat shock” driven by major methane emissions released by volcanism
(Svensen et al. 2004), which was followed by additional hyperthermal periods in the early Eocene until the global
temperature peaked around 50 Mya (Zachos et al. 2001).

The most striking feature emerging from our chronogram is the more than 10 Ma difference in initia
divergence dates between the extant Furnariida and Tyrannida clades. Divergence events leading to the extant
families are thus much more densely packed in Tyrannida, as also reflected by the poorer resolution in the deeper
regions of the Tyrannidatree. According to our chronogram, whereas the Furnariida began diversifying already in
the Middle Eocene (ca. 44 Mya), the early diversification of extant Tyrannida lineages started a few million years
after the abrupt global cooling and onset of the first Antarctic chill at the Eocene-Oligocene transition (32,2 Mya)
(Zachos et al. 2001). This event triggered the expansion of savannah and desert habitats and aregression of tropical
deciduous forests to near the equator (Jacobs et al. 1999), and was followed, on all continents, by a high biotic
turnover. Although the phylogenetic relationships of extant groups cannot explain the early diversification history,
it is tempting to assume that the presumably forest-adapted and frugivorous Tyrannida stem group was more
seriously weeded by the extinction crises at the Eocene-Oligocene transition than the more terrestriad and
insectivorous Furnariida.

The five most speciesrich radiations (Thamnophilinae, Synallaxinae, Elaeniinae, Tyranninae and
Fluvicolinae) al originated in the period around the mid-Miocene climate optimum (16-12 Ma). With the
exception of Thamnophilinae, these clades clearly diversified in connection with the expansion of open savannah
habitats that developed south of the tropical rainforest biome (Jacobs et al. 1999). These clades also rapidly
proceeded into riparian habitats in the tropical lowlands as well as in more open habitats in the south of the
continent and then north into the tropical Andes region (Ohlson et al. 2008; Rheindt et al. 2008a; Fjeldsa & Irestedt
2009). Thamnophilinae represent a different diversification pattern, maintaining a high diversification rate in the
tropical rainforest biome. This pattern is also found in several other clades, e.g. Dendrocolaptinae, Philydorinae,
Piprinae and one clade of the Cotinginae. These clades are all most diverse in humid forest and, with the exception
of Cotingidae, mostly restricted to forest understory. Their common diversification patterns likely reflect a
response to the landscape dynamics in the Amazon Basin (e.g., Aleixo & Rossetti 2007; Hoorn & Wesselingh
2010).

Tree topology and definition of monophyletic clades. The current study corroborates much of the general
picture of New World suboscine relationships that has been retrieved from earlier studies, chiefly the broad studies
of Furnariida (Moyle et al. 2009) and Tyrannida (Tello et al. 2009), but also studies of various family-level clades,
such as Irestedt et al. (2004, 2009), Brumfield et al. (2007), Ohlson et al. (2008), and Derryberry et al. (2011). In
the following, we summarize the phylogenetic results from the current study, highlighting instances in which
previously unresolved relationships have been clarified. Tribal level names in the following sections refer to the
classification proposed by Moyle et al. (2009) and Tello et al. (2009).

Furnariida. In the combined tree, we found Melanopareiidae and Conopophagidae to group with strong
support with the Thamnophilidag, in line with the topology found in the nuclear intron tree. Their positionsin the
RAG tree were unresolved, in accordance with Moyle et al. (2009).

Thamnophilidae. There is still no strong evidence in favour of any of the alternative hypotheses on the initial
splits in Thamnophilidae, between Euchrepomidinae, Myrmornithinae and Thamnophilinae. RAG data favour a
placement of Euchrepomidinae as the sister to the remainder of Thamnophilidae, whereas the nuclear intron data
show a poorly supported sister relationship between Euchrepomidinae and Thamnophilinae to the exclusion of
Myrmornithinae. In the combined tree, Euchrepomidinae comes out as the sister to the remainder of
Thamnophilidae, but with only low support. Irestedt et al. (2004b) places Euchrepomidinae as the sister to
Myrmornithinae, whereas Brumfield et al. (2007), Moyle et al. (2009) and Bravo et al. (2012) placed it as the most
basal offshoot in the Thamnophilidae.
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Relationships within Thamnophilinae have proven rather difficult to establish, as the basal nodes are densely
packed with little internal structure. Further, differences in both marker and taxon sampling in different studies
have hampered a straightforward comparison of topologies. With the combined RAG and nuclear intron data we
find an expanded Microrhopiini, as the sister group to the remaining Thamnophilinae. Microrhopiini also includes
Neoctantes P. L. Sclater, which was unresolved in Moyle et al. (2009), and Epinecrophylla M. L. Ider &
Brumfield, which was not sampled in that study. This clade is also found in the nuclear intron tree.

Formicivorini isthe sister to a clade consisting of Thamnophilini, Pyriglenini and Pithyini. Thisrelationship is
well supported in the combined tree, but not recovered with any support in the RAG or nuclear intron trees, nor in
Moyle et al. (2009). A sister relationship between Formicivorini and the Thamnophilini/Pyriglenini/Pithyini
complex is also well supported in Brumfield et al. (2007), where ca. 2300 bp of mitochondrial data and denser
taxon sampling were applied to resolve internal relationships.

The relationships within the Thamnophilini/Pyriglenini/Pithyini complex are not consistently recovered in the
different studies,nor in our combined tree. There are differences between our RAG and nuclear intron trees and
even between our RAG tree and that of Moyle et al. (2009). The best overall resolution is presented in Brumfield et
al. (2007), where good support is found for a sister relationship between Pyriglenini and Pithyini, with
Thamnophilini astheir sister. In that study, the Sclateria group (represented in our dataset by Myrmeciza ber|epschi
Hartert) is found as the most basal offshoot in Pyriglenini, contrary to our combined tree. On the other hand, the
support for Thamnophilini is surprisingly low in Brumfield et al. (2007).

Overall, the diversification in Thamnophilinae is comparatively recent, and the combination of densely packed
nodes and alarge number of species makes it important to employ exhaustive taxon sampling and alarge amount of
molecular data to gain stability and high topological resolution. Denser taxon sampling and the inclusion of more
sequence data is necessary to resolve the relationships in Thamnophilidae, as can be seen in this study, where
already a modest increase in the amount of data from comparatively slowly evolving markers, results in a better
internal resolution. Much remains to be sorted out in terms of intergeneric relationships, and many genera are
known to be non-monophyletic (e. g. Myrmeciza G. R. Gray, Myrmotherula P. L. Sclater, Cercomacra P. L: Sclater,
Percnostola Cabanis & Heine).

Furnarioidea. Small basal families. Gralariidae, Rhinocryptidae and Formicariidae form the most basal
lineages within the Furnarioidea. The phylogeny of Formicariidae is uncontroversial at the genus level, but for the
other two families there are some points of disagreement. We find Grallariidae and Rhinocryptidae to be the
consecutive sister groups to the remainder of Furnarioidea. This differs from the relationships indicated by the
RAG data (this study, Moyle et al. 2009) where a sister relationship between the two receives moderate support.
The only published molecular phylogeny of Grallariidae (Rice 2005) is based on two mitochondrial markersfor 16
ingroup taxa, and our results do not disagree with that one in any respect. However, a comprehensive multi-locus
phylogeny is needed in order to understand both generic boundaries and diversification patternsin the family.

In Rhinocryptidae, nuclear intron data and RAG data yield conflicting results concerning the placement of
Scelorchilus Oberholser. Nuclear intron data (this study, Fig. 3; Ericson et al. 2010) place them with
Scytalopodinae, while RAG data place them with Rhinocryptidae. Both relationships receive strong support and in
the combined dataset, the result is driven by the signal in the RAG data, placing Scelorchilus as the sister to the
remainder of Rhinocryptinae. The RAG topology, with the small and near-flightless species together in one group
that mainly radiated along the Andes, might be more compatible with biogeography and gross morphol ogy.

Scleruridae, Dendrocolaptidae and Furnariidae. Severa studies have established that Geositta Swainson
and Sclerurus Swainson form a clade that is the sister to the rest of Furnariidae and Dendrocol aptidae (Irestedt et
al. 2002; Chesser et al. 2004; Moyle et al. 2009; Derryberry et al. 2011). Geositta and Sclerurus are terrestrial
feeders, like the basal Furnarioidea groups, while Dendrocolaptidae and Furnariidae are primarily scansorial and
arboreal (Fjeldsd et al. 2005). The intergeneric division of Scleruridae is uncontroversia and the split between the
two generais very old. The estimates differ between 20,6 Mya (Irestedt et al. 2009) and herein, and ca. 26 Mya
(Derryberry et al. 2011).

A major point of controversy concerning the deeper phylogenetic relationships in this clade is the position of
Xenops relative to Dendrocol aptidae and Furnariidae. Nuclear intron data favour a position of Xenops as the sister
to Dendrocolaptidae, while RAG data place it as the sister to Furnariidae. In the combined tree, its position is
unresolved in relation to the other two clades. When scrutinizing the gene trees in Irestedt et al. (2009) Xenops
associates with Dendrocol aptidae in the myoglobin and G3PDH trees, but not in the ODC, beta-Fibrinogen intron 5
or cytochrome b trees.
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The densely sampled phylogeny by Derryberry et al. (2011) suggests a continuously high rate of speciation, as
the group diversified into new niche space that emerged as a consequence of the South American landscape
dynamics (Fjeldsd & Irestedt 2009). However, as in other New World suboscine groups, there is a marked
imbal ance between species-poor and species-rich clades, as several lineages that originated during the early or mid-
Miocene apparently did not undergo such marked (net) radiation: Xenops, Sittasominae, Berlepschia Ridgway,
Pygarrhichinae, Margarornis Reichenbach and Aphrastura Oberholser.

Except for the placement of Glyphorynchus Wied-Neuwied in Irestedt et al. (2004a, 2009), there is a general
agreement on the relationships within Dendrocol aptidae between those studies, Moyle et al. (2009), Derryberry et
al. (2011) and the current study. The position of Glyphorynchus as the sister to the remainder of Dendrocolaptidae
is found only in the cytochrome b results of Irestedt et al. (2004a, 2009). Within Dendrocolaptinae, there is some
uncertainty as to the position of Dendroplex Swainson, as its placement in the Xiphorhynchus group is supported
by Moyle et al. (2009) but not by Derryberry et al. (2011). Asin many other groups we find a marked imbalance in
species number between the two main clades, with Sittasominae counting only nine species and Dendrocol aptinae
44, These two clades a so exhibit some differences in habitat utilization, with Sittasominae more restricted to forest
interior, while many members of Dendrocolaptinae occur in forest exterior and semi-open habitats, a pattern that is
recurrent in many clades in the New World suboscines.

For Furnariidae, the combined dataset of RAG and nuclear introns yields a tree with a mostly well supported
but short backbone nodes. In the trees based on individual datasets, the backbone topology for Furnariidae is
characterized by many short internodes and a high instance of low or moderate statistical support. Comparison with
other studies reveals that at least some of these topological differences depend on the choice of markers, but this
mostly involve short internodes and often rather recent (<15 MA) divergences that are sparsely sampled in our
study.

There are a number of differences between the RAG tree and the nuclear intron tree. In the combined tree,
RAG data generally appear to have a stronger influence on the topology than do the nuclear intron data. Asin
Moyle et al. (2009) and Derryberry et al. (2011), but contrary to Irestedt et al. (2009), Berlepschiais placed as the
sister to the remainder of Furnariidae. Likewise, in accordance with Moyle and Derryberry, Pygarrhichinae is the
sister group to a large clade consisting of the subfamilies Furnariinae, Philydorinae and Synallaxinae. The sister
relationship between Philydorinae and Furnariinae, recovered by Derryberry et al. (2011), was not recovered with
significant support by Moyle et al. (2009) or in the present study. We found Furnariinae and Philydorinae to form
an unresolved polytomy with the large Synallaxinae radiation, although a sister relationship between the two is
weakly supported in the combined tree. Terminal relationships in Furnariinae, Philydorinae and Synallaxinae are
more thoroughly clarified in Derryberry et al. (2011), which is based on mitochondrial and nuclear data and a near-
complete sampling of the species taxa.

The relative positions of Berlepschia, Margarornithini and Pygarrhichinae differ between Moyle et al. (2009)
and Derryberry et al. (2011) on one side and Irestedt et al. (2009) on the other. The most deviant tree is that from
Irestedt et al. (2009) in which Margarornis and Premnoplex Cherrie were not found to be the sister to the rest of
Synallaxinae, but are instead part of a basal polytomy with Berlepschia, Philydorinae and Pygarrhichinae.
Secondly, Furnariinae was not found to be monophyletic by Irestedt et al. (2009) as instead the Pseudocolaptes
group was sister to the Furnarius group plus Synallaxinae (except Margarornithini). Much of the uncertainty may
stem from the generally short internodes separating these groups.

Tyrannida. The interrelationships between Pipridae, Cotingidae and Tyrannoidea were not recovered with
confidence in this study. This has been arecurring feature in Tyrannida systematics (e.g. Ericson et al. 2006; Tello
et al. 2009), suggesting that these nodes will be very difficult to tease apart, despite increased amounts of data.
Furthermore, the Cotingoidea clade suggested by the RAG datain Tello et al. (2009), comprised of Cotingidae and
an enlarged Tityridae, was not recovered with significant support by our RAG data. On the contrary, with the
addition of nuclear intron data we yield strong support for including Tityridae, Oxyruncus and Onychorhynchini as
members of the Tyrannoidea.

Pipridae. As has been demonstrated previously (Tello et al. 2009; McKay et al. 2010) we found that Pipridae
is divided into two clades, Neopelminae, consisting of Neopelma P. L. Sclater and Tyranneutes P. L. Sclater &
Salvin, and the “typical manakins’. Also in agreement with those studies, we show that the “typical manakins’ in
turn consists of two strongly supported clades. The smaller of these two consists of Chiroxiphia Cabanis,
Antilophia Reichenbach, Ilicura Reichenbach, Corapipo Bonaparte and Masius Bonaparte and is largely
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distributed outside of the Amazon Basin. The other clade consists of Heterocercus P. L. Sclater, Manacus Brisson,
Lepidothrix Bonaparte, Pipra Linnaeus, Dixiphia Reichenbach and Machaeropterus Bonaparte and has its
distributional centre in the Amazon basin. These two clades were ranked as the subfamilies llicurinae and Piprinae
respectively by Tello et al. (2009). However, in view of the relatively recent divergence (at ca12,5 Mya, Fig 4) we
prefer to keep the entire “typical manakin” clade as one subfamily (Piprinag). Xenopipo atronitens Cabanis and
Chloropipo unicolor Taczanowski are placed in unresolved positions alongside these two clades. These results
further suggest that Chloropipo and Xenopipo do not form a clade. Chloropipo uniformis has been shown to be the
sister species to Xenopipo atronitens (Tello et al. 2009), but Chloropipo unicolor, used in the present study, does
not group with Xenopipo in any analysis. This strongly suggests that Chloropipo is not monophyletic, but a
complete taxonomic sampling of Chloropipo is needed before the position of the remaining species can be
determined. The uncertainty of the position of Xenopipo and Chloropipo within Piprinae stems from conflicting
topologies in the RAG and nuclear intron datasets, and there is also a conflict between mitochondrial and nuclear
intron data regarding the position of Chloropipo unicolor in McKay et al. (2010). Resolution within Piprinae is
generally poor in all studies, especially in the deeper parts of Piprinae and among members of the genera Pipra,
Machaeropterus and Dixiphia, and a comprehensively sampled phylogeny is sorely needed for this group.

Cotingidae. The subdivision of Cotingidae into Pipreolinae and Phytotominae of the Andean and Austral
regions and the Cotinginae of the tropical rainforests is unambiguous, while relationships within the large
Cotinginae are less clear (cf. Ohlson et al. 2007; Tello et al. 2009 and Fig. 1 herein). This uncertainty involves the
relationships of the genera Rupicola Brisson, Phoenicircus Swainson, Carpornis G. R. Gray and Showornis Prum
to the remaining Cotinginae. Their positions are unresolved in Tello et al. (2009), and in Ohlson et al. (2007)
Showornis form part of Cotinginae whereas the placements of Rupicola and Phoenicircus are unresolved.
Secondly, the relationships of the genera Cotinga Brisson, Procnias Illiger, Lipaugus Boie and Tijuca Ferussac to
the well supported Cephalopterus and Gymnoderus groups also differs between Ohlson et al. (2007), Tello et al.
(2009) and our study and may in part depend on choice of molecular markers and rather sparse taxon sampling.

Tityridae, Oxyruncus and Onychorhynchidae. The monophyly of a clade comprising Oxyruncus,
Onychorhynchidae and Tityridae has been suggested previously (e.g. Ohlson et al. 2008; Tello et al. 2009), but
never with strong support. Here we receive a PP=97 for this clade in the combined tree, but only PP=85 in the
nuclear intron tree, and an unsupported association with Cotingidae in the RAG tree, as was also found by Tello et
al. (2009). In the nuclear intron data set, Onychorhynchidae forms a clade with Oxyruncus as a sister to Tityridae,
but with low support for relationships between these three groups. In the RAG dataset there is no resolution
between these three and Cotingidae. According to our chronogram, Tityridae, Oxyruncus and Onychorhynchidae
diverged aready during the Oligocene (Fig. 2). In Tityridae we further find a deep split (ca. 22 Mya) between
Schiffornithinae, which is mainly restricted to forest interior, and Tityrinae, whose broader habitat spectrum is
largely centered on forest exterior and semi-open habitats. This split is consistently recovered in al studies,
regardless of markers used (e.g. Barber & Rice 2007; Ohlson et al. 2008; Tello et al. 2009).

Piprites, Platyrinchidae and Tachuris. The relationships of Platyrinchidae, Tachuris and Piprites could not be
clarified with the increased amount of data herein. Tachurisis placed as the sister to Rhynchocyclidae in both the
RAG and the nuclear intron datasets, but not with statistically significant support. Platyrinchidae (including
Calyptura Swainson, see Ohlson et al. 2012) is placed with Tachuris and Rhynchocyclidae in the nuclear intron
dataset, while it is placed as the sister group of Tyrannidae in the RAG tree, likewise with strong support. Piprites
is placed basally in a clade with Tachuris and Rhynchocyclidae in the RAG dataset, whereas the nuclear intron data
place Piprites as the sister to the entire clade of Platyrinchus, Neopipo, Tachuris, Rhynchocyclidae and Tyrannidae.
The conflicting signals from the two datasets are borne out in the combined tree (Fig. 1) as unresolved position of
all three groups alongside Rhynchocyclidae and Tyrannidae.

Rhynchocyclidae. Rhynchocyclidae has been found to consist of three well supported clades,
Pipromorphinae, Rhynchocyclinae and Todirostrinae, but the relationships between these are not clear from the
combined tree. However, in both the RAG tree and the intron tree Rhynchocyclinae and Todirostrinae are sister
groups, a result that receives strong support. The poor resolution in the combined tree stems from the radically
different placement of the Cnipodectes group in the RAG and intron trees. In the RAG tree they are sister to the rest
of Rhynchocyclidae, while nuclear intron data place them as sister to Todirostrinae. In Tello & Bates (2007)
Cnipodectes was placed as the sister of Rhynchocyclinae by both mitochondrial data and the nuclear intron beta-
fibrinogen 5, but support was inconclusive. Apart from this, our results are consistent with those in Tello & Bates
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(2007) and Tello et al. (2009), lending strong support to the three subfamilies, although some uncertainty remains
regarding their interrelationships. Most likely, Rhynchocyclinae and Todirostrinae are sister clades, but this and the
position of Cnipodectes and Taeniotriccus needs to be investigated more exhaustively.

Tyrannidae. Asin al recent studies, we find a basal polytomy with Hirundineinae, Elaeniinae and a clade
consisting of Muscigralla Orbigny & Lafresnaye, Tyranninae and Fluvicolinae. We also find some incongruence
between RAG and nuclear intron datasets regarding the positions of Muscigralla, Attila, Rhamphotrigon and
Legatus.

Elaeniinae. Elaeniinae consists of two main clades and the rel ationships agree with the results of Rheindt et al.
(2008b) and Tello et al. (2009), with two clades corresponding to Euscarthmini and Elaeniini in Tello et al. (2009).
The tree in Ohlson et al. (2008) differs in placing the Culicivora group, represented here by Serpophaga Gould,
Culicivora Swainson, Polystictus Reichenbach and Mecocerculus leucophrys Orbigny & Lafresnaye, and also
including Anairetes Reichenbach and Pseudocolopteryx Lillo (Ohlson et a 2008, Tello et al. 2009), as an
additional clade in a basal polytomy. Here, they are instead nested in the Elaeniini, as the sister group to a clade
consisting of Capsiempis Cabanis & Heine, Phaeomyias Berlepsch and Phyllomyias Cabanis & Heine. Basal
divergences are poorly resolved in both the principal clades.

Tyranninae. Myiarchini and Tyrannini are both recovered with good support, with Attila, Legatus and
Ramphotrigon in basal positions. The placement of Legatus outside of Tyrannini is rather unexpected, and is
apparently driven by the signal in the RAG data. In the nuclear intron tree, Attila and Ramphotrigon are placed with
Fluvicolinae, athough with low support. The placement of Attila and Ramphotrigon in basal positions in
Tyranninae are in line with morphological as well as behavioura evidence (Ohlson et al. 2008). The placement of
Ramphotrigon at the base of Fluvicolinae in the nuclear intron data is poorly supported (see also Ohlson et al.
2008), asis the placement of Attila at the base of Fluvicolinae in the RAG tree.

Fluvicolinae. The relationshipsin Fluvicolinae are nearly identical to the ones recovered by Tello et al. (2009).
They differ from the results in Ohlson et a (2008) in the positions of the Ochthoeca and Fluvicola clades. In
Ohlson et al. (2008) and in the nuclear intron tree in this study, Ochthoeca clade is sister to the remainder of
Fluvicolinae, although with only moderate support, whereas in the RAG tree the Fluvicola clade is nested within
the Ochthoeca clade, as in the combined tree and the tree in Tello et al. (2009). A sister relationship between
Contopini and Xolmiini is strongly supported (Fig. 1) and we find strong support for this relationship in both the
RAG and the nuclear intron trees. Deeper nodes in Fluvicolinae are generally short and a more comprehensive
study is needed.

Classification. Based on the phylogenetic results in this study and in a number of other studies, primarily
Moyleet al. (2009), Tello et al. (2009), Irestedt et al. (2004), Brumfield et al. (2007), Ericson et al. (2010), Irestedt
et al. (2009), Derryberry et al. (2011), Ohlson et al. (2007) and Ohlson et al. (2008), we recommend the taxonomic
arrangement for the New World suboscines presented in Table 2. Below are some principal views about the need
for proposing new taxa, followed by formal descriptions of new family- and subfamily level taxa.

We largely follow Moyle et al. (2009) and Tello et al. (2009), which are the only previous attempts to
synthesize new findings regarding NWS phylogeny into a new classification. The inclusion of sequence data from
three nuclear introns results in different topologies in the deep phylogeny of Furnariida and Tyrannida and in these
cases we propose modifications from the classifications put forward by Moyle et al. (2009) for Furnariidaand Tello
et al. (2009) for Tyrannida. First, we find strong support for Melanopareiidae and Conopophagidae being most
closely related to Thamnophilidae, although the split between them is very deep. In accordance with this, we refer
M elanopareiidae and Conopophagidae to the superfamily Thamnophiloidea. Second, the superfamily Grallarioidea
of Moyle et al (2009), consisting of Grallariidae and Rhinocryptidae, is not recovered in our combined tree. In fact
the support was weak in the tree of Moyle et al. (2009) and the relationship is unsupported in our RAG tree. In the
nuclear intron tree, Grallariidae is the sister of the remainder of the Furnarioidea, and this is also the topology in
our combined tree. Thus, we refer Grallariidae and Rhinocryptidae to the superfamily Furnarioidea. Third, we do
not recover the Cotingoidea of Tello et al. (2009), consisting of Cotingidae and an expanded Tityridae. The support
for that constellation is rather weak in the RAG trees, whereas the intron data strongly favour a placement of
Oxyruncus, Onychorhynchidae and Tityridae as the sister clade to the clade consisting of Tyrannidae,
Rhynchocyclidae and alies. We prefer to treat these clades as separate families, Oxyruncidae, Onychorhynchidae
and Tityridae, and we refer them to the superfamily Tyrannoidea.

The last decades has seen a drastic overturning of the conventional view of avian systematic relationships,
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making it ever harder to adhere to a “traditional view” in classification. There has been a general tendency in the
past to merge small and aberrant taxa into larger families, both as a means of maintaining a ssmple classification,
and because of a lack of a strict phylogenetic approach and data that could guide the taxonomic decisions in a
transparent way. Even with a more well founded phylogenetic basis there has often been a reluctance to erect new
family-level taxa, especially for small clades of “problematic” affinities. This has left a number of distinctive and
comparatively old clades hanging in a taxonomic limbo, awaiting additional data that would allow inclusionin a
well-established family. It has also led to a neglect of patterns that might determine the fate of clades, whether they
fail to diversify, become relictual or undergo great phylogenetic expansion. Treating these small clades as family
level taxa highlights their distinctiveness, deep evolutionary history and their hitherto unresolved rel ationships.

The phylogenetic tree of the NWS, like that of aimost every other large radiation, contains lineages of widely
different species richness and several taxa whose systematic positions have been contentious. Large amounts of
data have been employed to clarify the phylogenetic positions of various debated taxa of NWS. We argue that the
failure so far in associating these taxa, such as Platyrinchidae, Oxyruncus and Xenops unambiguously with any
larger clades cannot be explained solely by insufficient data. Instead, these taxa stand out as isolated clades that
were part of rapid successions of divergence events along with clades that today are rich in species (Fig. 4). These
small clades are distinctive and internally coherent in terms of ecology and morphology and they have independent
evolutionary histories that are likely to span at least 20 million years. Keeping these taxa in taxonomic limbo (i.e.
as incertae sedis) becomes harder to justify and here we opt to highlight their isolation, distinctiveness and old age
by treating them as family level taxa. Looking at avian systematics as a whole, there are many small families that
most ornithologists would never consider subsuming into more inclusive taxonomic entities, even if their sister
rel ationships are unambiguous (consider merging the Shoebill into Pelecanidae, for example). Concerning the New
World suboscines, we would in severa cases argue in favour of recognizing these clades as family level taxa,
despite the “relatively little content” of monotypic families (Tello et al. 2009). These taxa are al “isolated” early
offshoots from the larger radiations, and they are in most cases ecologically and morphologically distinctive from
their closest living relatives. In our view, a treatment as family level taxa is more informative about the nature and
phylogenetic position of taxa like Oxyruncus, Xenops, Tachuris and Platyrinchus compared to subsuming them
into the larger groups from which they diverged early in their histories.

TABLE 2. Proposed new classification of the New World suboscines. Genera denoted “ sedis mutabilis’ are of dightly unclear
relationships within their nearest higher taxonomic rank due to inconclusive results in this and other molecular phylogenetic
studies. Genera denoted “(provisional)” are assumed to belong in the proposed taxonomic group athough there are no
molecular data published. Genera denoted “incerta sedis’ have not yet been included in any molecular phylogenetic study and
are of uncertain affinities within the nearest above taxonomic rank. Severa genera are known to be non-monophyletic, but no
names have been proposed for the constituent groups. These groups are detailed as far as possiblein this classification

The higher order of taxa in Passeriformes can be arranged as follows

ORDER Passeriformes
SUBORDER Acanthisitti
SUBORDER Tyranni (suboscines)
INFRAORDER Eurylaimides (Old World suboscines)
INFRAORDER Tyrannides (New Wor ld suboscines)
PARVORDER Furnariida
SUPERFAMILY Thamnophiloidea
SUPERFAMILY Furnarioidea
PARVORDER Tyrannida
FAMILY Pipridae
FAMILY Cotingidae
SUPERFAMILY Tyrannoidea
SUBORDER Passeri (oscines)
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ThelInfraorder Tyrannides can be arranged asfollows

ORDER Passeriformes
SUBORDER Tyranni (suboscines)
INFRAORDER Tyrannides (New World suboscines)
PARVORDER Furnariida
SUPERFAMILY Thamnophiloidea
FAMILY Melanopareiidae Ericson, Olson, Irestedt, Alvarenga & Fjeldsa, 2010
Melanopareia
FAMILY ConopophagidaeP. L. Sclater & Salvin, 1873
Pittasoma
Conopophaga
FAMILY Thamnophilidae Swainson, 1824
SUBFAMILY Euchrepomidinae Bravo, Remsen, Whitney & Brumfield, 2012
Euchrepomis
SUBFAMILY Myrmornithinae Sundevall, 1872
Myrmornis
Pygiptila
Thamnistes
SUBFAMILY Thamnophilinae Swainson, 1824
Tribe Microrhopiini Moyle, Chesser, Brumfield, Tello, Marchese & Cracraft, 2009
Myrmorchilus
Myrmeciza atrothorax group (M. atrothorax, M. pelzelni)
Microrhopias
Neoctantes
Epinecrophylla
Clytoctantes (provisional)
Tribe Formicivorini Bonaparte, 1854
Formicivora
Myrmochanes
Terenura
Myrmotherula
Tribe Thamnophilini Swainson, 1824
Dichrozona
Rhopias
Ideria
Thamnomanes
Megastictus
Dysithamnus

Herpsilochmus
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Cymbilaimus
Taraba
Hypoedaleus
Batara
Mackenzaena
Frederickena
Sakesphorus
Thamnophilus
Biatas (provisional)
Xenornis (provisional)
Tribe Pyriglenini Moyle, Chesser, Brumfield, Tello, Marchese & Cracraft, 2009
Sclateria
Myrmeciza hyperythra
Schistocichla
Hypocnemoides
Hylophylax
Myrmeciza berlepschi group (M. berlepschi, M. exsul)
Myrmeciza laemosticta group (M. griseiceps, M. laemosticta, M. nigricauda)
Myrmobor us
Percnostola lophotes
Pyriglena
Gymnocichla
Percnostola rufifrons
Myrmeciza fortis group (M. fortis, M. goeldii, M. immaculata, M. melanoceps)
Myrmeciza loricata group (M. loricata, M. ruficauda, M. squamosa)
Myrmeciza hemimelaena group (M. castanea, M. hemimelaena)
Tribe Pithyini Ridgway 1911
Cercomacra
Drymophila
Hypocnemis
Willisornis
Pithys
Phaenostictus
Phlegopsis
Skutchia
Gymnopithys
Rhegmatorhina
Incerta sedis within Thamnophilinae
Myrmeciza disjuncta
Myrmeci za ferruginea

Rhopornis
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Myrmeciza s.str.(M. longipes)
SUPERFAMILY Furnarioidea

FAMILY GrallariidaeP. L. Sclater & Salvin, 1873

Grallaricula
Myrmothera
Hylopezus

Grallaria

FAMILY Rhinocryptidae Wetmore, 1930 (1837)
SUBFAMILY Rhinocryptinae Wetmore, 1930 (1837)

Pteroptochos
Scelorchilus
Liosceles
Psilorhamphus
Acropternis
Rhinocrypta
Teledromas

SUBFAMILY Scytalopodinae J. Muller, 1846

Eleoscytal opus
Merulaxis
Myornis
Eugralla
Scytalopus

FAMILY Formicariidae G. R. Gray, 1840

Formicarius

Chamaeza

FAMILY Scleruridae Swainson, 1827

Sclerurus

Geositta

FAMILY Dendrocolaptidae G. R. Gray, 1840
SUBFAMILY Sittasominae Ridgway, 1911

Certhiasomus
Deconychura
Sittasomus

Dendrocincla

SUBFAMILY Dendrocolaptinae G. R. Gray, 1840

Glyphorynchus
Dendrexetastes
Nasica
Hylexetastes
Xiphocolaptes

Dendrocolaptes
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Dendroplex
Campylorhamphus
Drymornis
Drymotoxeres
Lepidocolaptes
Xiphorhynchus
FAMILY Xenopidae Bonaparte, 1854
Xenops
FAMILY Furnariidae G. R. Gray, 1840

SUBFAMILY Berlepschiinae NEW TAXON Ohlson, Irestedt, Ericson & Fjelds&
Berlepschia

SUBFAMILY Pygarrhichinae Wolters, 1977
Microxenops
Pygarrhichas
Ochetorhynchus

SUBFAMILY Philydorinae P. L. Sclater & Salvin, 1873
Anabazenops
Megaxenops
Philydor erythrocercum group (P. erythrocercum, P. fuscipenne)
Cichlocolaptes
Heliobletus
Philydor s.str. (P. atricapillus, P. novaesi, P. pyrrhodes)
Anabacerthia
Syndactyla
Ancistrops
Philydor rufum group (P. erythropterum, P. rufum)
Hylocryptus (incl. Automolus rubiginosus, A. rufipectus, Clibanornis)
Thripadectes
Automolus melanopezus group (A. melanopezus, A. rufipileatus)
Hyloctistes
Automoluss. str.

SUBFAMILY Furnariinae G. R. Gray, 1840
Pseudocol aptes
Premnornis
Tarphonomus
Furnarius
Lochmias
Phleocryptes
Limnornis
Geocerthia

Upucerthia
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Cinclodes

SUBFAMILY Synallaxinae de Selys-Longchamps, 1839
Margarornis
Premnoplex
Aphrastura
Leptasthenura
Sylviorthorhynchus
Phacellodomus
Hellmayrea
Anumbius
Coryphistera
Asthenes

Tribe Synallaxini de Selys-Longchamps, 1839
Pseudasthenes
Spartonoica
Pseudoseisura
Synallaxis propingua
Schoeniophylax
Certhiaxis
Synallaxis
Tribe Thripophagini Moyle, Chesser, Brumfield, Tello, Marchese & Cracraft, 2009
Acrobatornis
Metopothrix
Xenerpestes
Sptornis
Roraimia
Thripophaga
Limnoctites
Cranioleuca
PARVORDER Tyrannida
FAMILY Pipridae Rafinesque, 1815

SUBFAMILY Neopelminae Tello, Moyle, Marchese & Cracraft, 2009
Tyranneutes
Neopelma

SUBFAMILY Piprinae Rafinesque, 1815
Chloropipo sedis mutabilis
Xenopipo sedis mutabilis
llicura
Masius
Corapipo
Antilophia
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Chiroxiphia
Lepidothrix
Heterocercus
Manacus
Pipra
Machaer opterus
Dixiphia
Ceratopipra
FAMILY Cotingidae Bonaparte, 1849
SUBFAMILY Pipreolinae Tello, Moyle, Marchese & Cracraft, 2009
Ampelioides
Pipreola
SUBFAMILY Phytotominae Swainson, 1837
Zaratornis
Phytotoma
Doliornis
Ampelion
Phibalura (provisional)
SUBFAMILY Cotinginae Bonaparte, 1849
Showornis
Carpornis
Phoenicircus
Rupicola
Cotinga
Tijuca
Lipaugus
Procnias
Haematoderus
Querula
Perissocephalus
Pyroderus
Porphyrolaema
Gymnoderus
Conioptilon
Carpodectes
Xipholena
SUPERFAMILY Tyrannoidea
FAMILY Oxyruncidae Ridgway, 1906
Oxyruncus
FAMILY Onychorhynchidae Tello, Moyle, Marchese & Cracraft, 2009
Onychor hynchus
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Terenotriccus
Myiobius
FAMILY Tityridae G. R. Gray 1840
SUBFAMILY Schiffornithinae Sibley & Ahlquist, 1985
Schiffornis
Laniocera
Laniisoma
SUBFAMILY Tityrinae G. R. Gray, 1840
lodopleura
Tityra
Xenopsaris
Pachyramphus
FAMILY Pipritidae NEW TAXON Ohlson, Irestedt, Ericson & Fjeldsa
Piprites
FAMILY Platyrinchidae Bonaparte 1854
Calyptura
Platyrinchus
Neopipo
FAMILY Tachurididae NEW TAXON Ohlson, Irestedt, Ericson & Fjeldsd
Tachuris
FAMILY Rhynchocyclidae Berlepsch, 1907
SUBFAMILY Pipromorphinae Wolters, 1977
Mionectes
Leptopogon
Pseudotriccus
Corythopis
Phylloscartes
Pogonotriccus
SUBFAMILY Rhynchocyclinae Berlepsch, 1907
Rhynchocyclus
Tolmomyias
SUBFAMILY Todirostrinae Tello, Moyle, Marchese & Cracraft, 2009
Taeniotriccus sedis mutabilis
Chnipodectes sedis mutabilis
Todirostrum
Poecilotriccus
Myiornis
Hemitriccus
Atalotriccus
Lophotriccus

Oncostoma
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FAMILY Tyrannidae Vigors, 1825

SUBFAMILY Hirundineinae Tello, Moyle, Marchese & Cracraft, 2009
Myiotriccus
Nephelomyias
Pyrrhomyias
Hirundinea

SUBFAMILY Elaeniinae Cabanis & Heine, 1859-60

Tribe Euscarthmini von Ihering 1904
Zimmerius
Sigmatura
Inezia
Euscarthmus
Ornithion
Camptostoma
Tyranniscus (part of Phyllomyias)
Acrochordopus (part of Phyllomyias)
Xanthomyias (part of Phyllomyias)
Mecocer culus poecilocercus group (all sp. except M. leucophrys)
Tribe Elaeniini Cabanis & Heine, 185960

Elaenia
Tyrannulus
Myiopagis
Suiriri
Capsiempis
Phyllomyiass. str.(P. fasciatus, P. griseiceps, P. weedeni)
Phaeomyias
Nesotriccus (provisional)
Pseudelaenia
Mecocerculuss. str.(M. leucophrys)
Anairetes
Polystictus
Culicivora
Pseudocol opteryx
Serpophaga

SUBFAMILY Muscigralinae NEW TAXON Ohlson, Irestedt, Ericson & Fjeldsa
Muscigralla

SUBFAMILY Tyranninae Vigors, 1825
Attila
Legatus
Rhamphotrigon
Deltarhynchus
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Tribe Myiarchini Hellmayr 1927
Rhytipterna
Casiornis
Srystes
Myiarchus
Tribe Tyrannini Vigors, 1825
Pitangus
Philohydor
Machetornis
Tyrannopsis
Megarynchus
Myiodynastes
Myiozetetes
Conopias (provisional)
Phelpsia (provisional)
Empidonomus
Griseotyrannus
Tyrannus
SUBFAMILY Fluvicolinae Swainson, 183233
Colonia, sedis mutabilis
Myiophobusss. str., sedis mutabilis (M. cryptoxanthus, M. fasciatus)
Tribe Fluvicolini Swainson 1832-33
Myiophobus roraimae group (M. flavicans, M. inornatus, M. phoenicomitra, M. roraimae)
Sivicultrix
Colorhamphus
Ochthoeca
Sublegatus
Pyrocephalus
Fluvicola
Arundinicola
Gubernetes
Alectrurus
Muscipipra (provisional)
Tribe Contopini Fitzpatrick 2004
Ochthornis
Cnemotriccus
Aphanotriccus
Lathrotriccus
Mitrephanes
Sayornis

Empidonax
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Contopus

Xenotriccus (provisional)
Tribe Xolmiini Tello, Moyle, Marchese & Cracraft, 2009

Lessonia

Hymenops

Knipolegus

Satrapa

Muscisaxicola

Cnemarchus

Polioxolmis

Xolmis

Agriornis

Neoxolmis

Myiotheretes

New taxa

SUBFAMILY Berlepschiinae, new subfamily level taxon, (type genus: Berlepschia Ridgway, 1887)

Diagnosis. Molecular studies have demonstrated this genus to be an isolated lineage within Furnariidae,
although its position differs depending on molecular marker choice. It is, however, aways a deep and isolated
clade; age estimates vary between 18 and 22 Mya. Morphologically and behaviourally it is one of the most
distinctive members of the family. A large (ca. 20 cm), slender furnariid with along and straight bill and longish
tail with protruding shafts. It has a striking pattern of black and white striping and barring on head and underparts
and bright rufous upperparts. It is completely restricted to Mauritia palm swamps, where it forages by climbing
among palm fronds, probing and gleaning for arthropod prey.

Included species: The genus Berlepschia, with asingle species, B. rikeri Ridgway.

FAMILY Pipritidae, new family level taxon (type genus Piprites Cabanis, 1847)

Diagnosis. Molecular studies have repeatedly shown this genus to be an isolated old lineage related to
Rhynchocyclidae and Tyrannidae. Dating estimates, although inconclusive due to poor resolution, point to an age
between 25 and 28 Mya. Small (12—14 cm) stocky tyrannids with large head, and stubby, laterally compressed hill.
Intricately patterned in green, yellow and grey, or black, yellow and chestnut. Unique among Tyrannida in having
digits 1 and 2 of the foot fused. Possesses internal cartilages in the syrinx, a feature shared with the rest of
Tyrannoidea, but lacks the Musculus obliquus ventralis, which is present in almost al members of
Rhynchocyclidae and Tyrannidae, and aso in Platyrinchidae and Tachuris (Ericson et al. 2006). Largely arboreal,
mostly feeding on arthropods and small fruit. Forages by perch-gleaning and short sallies and often joins mixed
flocks.

Included species. The three species traditionally included in the genus Piprites: P. pileata Temminck, P.
chloris Temminck and P. griseiceps Salvin. Although the divergence between P. pileatus and P. chlorisisvery deep
(ca 19 Mya) there is no reason to believe that the genus is not monophyletic.

FAMILY Tachurididae, new family level taxon (type genus Tachuris L afresnaye, 1836)

Diagnosis. Molecular studies have consistently shown that this genus is an old and isolated lineage related to
Rhynchocyclidae and Tyrannidae, but not unambiguously associated with any of them. Age estimates, although
inconclusive due to poor resolution, point to an age between 25 and 28 Mya. In morphology and behaviour
Tachuris is one of the most distinctive members of Tyrannida. Tiny (11-11,5 cm), slender, vaguely “warbler-like’
tyrannid with long and slender tarsi and an extremely narrow and pointed bill. Colourful and uniquely patterned
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among Tyrannida, with a distinctive juvenile plumage. An ecological specialist, confined to reed-beds, where it
forages for small arthropods by perch-gleaning and short sallies.
Included species: The genus Tachuris, with asingle species, T. rubrigastra Vieillot.

SUBFAMILY Muscigralinae, new subfamily level taxon (type genus Muscigralla Orbigny & Lafresnaye, 1837)

Diagnosis.Molecular studies have consistently placed this genus as an old and isolated lineage in Tyrannidae,
although the exact position varies slightly between studies. The current study strongly favours a sister relationship
with TyranninaetFluvicolinae and dating estimates point to an age of ca. 17 Mya. Smal (11-11,5 cm), long-
legged, and extremely short-tailed tyrant flycatcher, brownish grey above and whitish below, with contrasting lora
marks and wing bars. Upper tail coverts and tip of tail contrasting orange buff. Unique among suboscinesin having
the lower tibiotarsus unfeathered. Terrestrial in arid habitats along the Pacific coast of South America, where it
forages by pursuing prey by running and sallying.

Included species: The genus Muscigralla, with a single species, M. brevicauda Orbigny & Lafresnaye.
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