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Glossary

Bayesian inference: theory of statistical inference based on the idea of rational

accumulation of scientific knowledge. Statistical models and model parameters

are regarded as random variables, and statistical analysis uses data (obser-

vations) to update a prior probability distribution on these parameters to a

posterior probability distribution.

Bootstrapping (nonparametric): procedure for examining the uncertainty in a

statistical estimate by drawing new samples (pseudosamples) from the original

sample, and repeating the statistical procedure for each of these new samples.

There is also a parametric variant that generates new samples by using a

parametric model estimated from the original sample.

Conditional probability: the probability conditioned on (given) some infor-

mation; we can think of it as a relative probability. In Box 1, the conditional

(relative) probability of ancestor B being purple (state 0) is Pr(BZ0)Z
0.00024/0.00037Z0.65. Hence, the conditional probability it being green is

Pr(BZ1)Z1KPr(BZ0)Z1K0.65Z0.35. Box 1

Inference: to draw conclusions about a statistical model using empirical data.

Likelihood: probability that a particular model (with specific parameter values)

produced some observed data. For instance, the likelihood (probability) of the

data in Box 1 is LZ0.00037 given the binary Markov model with p1Z0.5 and

summing over ancestral states. If ancestor B has state 0 (purple), the likelihood

is L(BZ0)Z0.00024; if it has state 1 (green), the likelihood is L(BZ1)ZLK

L(BZ0)Z0.00037K0.00024Z0.00013. Box 1

Mapping uncertainty: the error associated with reconstructing the evolution of

a character on a given phylogenetic tree.

Markov chain Monte Carlo (MCMC): stochastic simulation technique for

generating a sample from a complex distribution that is known up to a

normalizing constant. It is widely used to sample Bayesian posterior

distributions, where it is based on specially designed Markov models (similar

but more complex than the ones used to model evolution; Box 3) and their

tendency to move towards a stationary condition. Box 3

Maximum likelihood (ML): widely used method of statistical inference that

finds the parameter values that maximize likelihood. For instance, when

p1Z0.5, the ML state of ancestor B (Figure Ib in Box 1) is 0 (purple) because

L(BZ0)OL(BZ1). More typically, ML is used to estimate the free parameters of

a probability model. For instance, if we vary p1, we discover that the likelihood

of the observed data is maximized when p1z0.20. This is the ML estimate of p1.

Figure I, Box 1

Parsimony: inference principle based on minimizing cost; in evolutionary

inference, usually the same as minimizing the number of character changes.

Phylogenetic uncertainty: the uncertainty in reconstructing character evolution

owing to error in the phylogenetic estimate.

Posterior (probability distribution): probability distribution describing the

knowledge about a model and its parameters after a Bayesian analysis. Can

be used as the prior in a subsequent Bayesian analysis.
Much recent progress in evolutionary biology is based

on the inference of ancestral states and past transform-

ations in important traits on phylogenetic trees. These

exercises often assume that the tree is known without

error and that ancestral states and character change

can be mapped onto it exactly. In reality, there is often

considerable uncertainty about both the tree and the

character mapping. Recently introduced Bayesian stat-

istical methods enable the study of character evolution

while simultaneously accounting for both phylogenetic

and mapping uncertainty, adding much needed credi-

bility to the reconstruction of evolutionary history.

Evolution is a difficult phenomenon to study. It is rarely
fast enough to be observed directly and only in exceptional
cases is it possible to find physical evidence, such as fossils
or ancient DNA, of past states and events. Fortunately,
evolution leaves its footprint in the distribution of traits
among living things. By studying this footprint, we can
infer how organisms originated through the successive
splitting of ancestral lineages, a process depicted in
phylogenetic trees. Given a phylogenetic tree, we can
also reconstruct the evolutionary history of individual
traits of interest.

The wide range of questions that can be addressed by
the INFERENCE (see Glossary) of ancestral states or paths
of change in key traits on phylogenetic trees is fascinating.
A few examples include the design of vaccines [1], the
reconstruction of ancestral hormone receptors [2] and
ancestral metabolic pathways [3], the inference of ancient
behaviours [4], the identification of past dispersal patterns
[5–7], the study of positive selection in proteins [8], the
discovery of viral infection pathways [9], and the recog-
nition of character correlation in coevolving lineages [10].

Many of these applications still rely on explicit or
implicit PARSIMONY mapping of characters onto a single
phylogenetic tree. The parsimony method finds the
reconstruction that implies the smallest number of
changes on the given tree; the solution is often intuitively
obvious (Figure Ia in Box 1). The inferred ancestral states
and character changes using parsimony typically reveal
the process of evolution in exhilarating detail.

It has long been recognized that this approach ignores
two important sources of error. First, the parsimony
principle singles out the solution(s) requiring the
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minimum amount of change on the given tree, although
there is usually a range of alternative reconstructions on
the same tree that are almost as likely [11] (MAPPING

UNCERTAINTY; Box 1). Second, the tree is almost never
known without error [12] (PHYLOGENETIC UNCERTAINTY;
Box 2). If there is a range of plausible trees, it is possible
that the evolutionary history of a trait could differ
depending on the tree. Clearly, ignoring either of these
sources of error is potentially misleading.
Review TRENDS in Ecology and Evolution Vol.19 No.9 September 2004
Prior (probability distribution): probability distribution specifying the knowl-

edge about a model and its parameters before a Bayesian analysis.

. doi:10.1016/j.tree.2004.07.002
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Box 1. Mapping uncertainty

We are interested in inferring the ancestral states of a character with

two states, purple (0) or green (1). The states could, for example,

represent particular behaviours, life-history traits or morphological

features. The tree and the ages of the nodes are known; the scale is in

amount of expected change.

Parsimony (Figure Ia) finds the reconstruction requiring the

minimum amount of change between green and purple. In this case,

there are two changes [marked (i) and (ii)] assuming gains and losses

count equally. Ancestors are inferred as being either green or purple,

but we do not know how certain these conclusions are. That is, we

have not taken mapping uncertainty into account.

Likelihood analysis requires that we know the relative rates of 0/1

changes (p1) and 1/0 changes (p0). Assuming that these rates are

equal (p0Zp1Z0.5), for instance, we can calculate the probability of

each ancestor being either green or purple (Figure Ib). The ancestral

state is uncertain for ancestors A, B and F because they are on

long branches or close to regions of the tree where a state change

is likely.

In Bayesian inference, p1 does not have to be fixed. Instead, we

specify a prior probability distribution on p1. In the absence of

background information, we can assume that all possible values are

equally likely (Figure Ic: prior). This enables us to infer ancestral states

while weighting each p1 value according to its probability given the

data (Figure Ic: posterior). In our example, Bayesian inference simply

adds a dash more uncertainty to the conditional probability values

(Figure Id; the effect is most notable for ancestor C).
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Sensitivity analysis

A simple way of examining the robustness of evolutionary
inference is to look at how sensitive the results are to
slight changes in the analytical conditions, a procedure
known as sensitivity analysis [13–17]. Belshaw and
Quicke [18] recently used this approach extensively in
studying the evolution of a group of parasitic wasps in
which species lay their eggs in either concealed or exposed
hosts. They examined mapping uncertainty by modifying
the parsimony cost of the evolutionary switch from
exposed to concealed hosts relative to the cost of the
opposite switch until their evolutionary reconstruction
changed. Then they assessed phylogenetic uncertainty by
finding the difference in parsimony score between the
preferred tree and the best tree implying a different
evolutionary history. The authors concluded that there
was strong support for two switches in the parsimony
reconstruction: one to exposed hosts and another in the
opposite direction. Other sensitivity-type approaches to
phylogenetic uncertainty include enumerating all pos-
sible phylogenetic trees consistent with some classifi-
cation of the studied organisms [19] or simulating
alternative trees according to some plausible tree-gener-
ating process, such as random speciation and extinction
[20], and then mapping the studied character(s) onto each
of these trees.

Although a particular sensitivity analysis can be
illuminating, the procedure is a little bit like measuring
the stability of sand castles by pouring water, blowing and
stepping on them. Without standardization, the fact that
one castle stands and the other falls might be solely
because of differences in the treatment. Parametric
statistical methods, such as likelihood analysis and
Bayesian inference, can potentially add the rigor that
sensitivity analysis lacks.
www.sciencedirect.com
Mapping uncertainty

Likelihood analysis

The most common parametric approach to mapping
uncertainty is based on LIKELIHOODS calculated from an
evolutionary probability model. The model of choice for
discrete characters is the Markov model (Box 3), exempli-
fied by the Jukes-Cantor model and similar models
long used by molecular evolutionists to study nucleotide,
amino acid and codon evolution [21]. There are also
Markov models for discrete characters with an arbitrary
number of states [11,22–25]. For quantitative charac-
ters, Brownian motion is a popular evolutionary model
[12,26]. Both Markov and Brownian motion models
are mathematically convenient, but they are also able
to capture many of the known complexities of the
evolutionary process.

Given a fixed tree with fixed branch lengths, fixed
states for the tips, and a Markov model with fixed
parameters (the fixed values of which are often derived
from a MAXIMUM LIKELIHOOD analysis), we can calculate
the RELATIVE (CONDITIONAL) PROBABILITY of each ancestral
state given the observed states at the tips [27–29]. The
conditional probabilities indicate some of the uncer-
tainty in the ancestral state assignments (Figure Ib in
Box 1), but the potential error in the fixed parameters
is not accounted for. For instance, assume that we
were mapping a binary character (0 or 1), with the
unknown parameter p1 specifying the rate of 0/1
changes measured as a fraction of the total evolution-
ary rate (p0Cp1; where p0 is this rate of 0/1
changes; Box 3). For the conditional probabilities to
be valid, we have to assume the value of p1 was
known with certainty although it is typically an
estimate, perhaps a maximum likelihood estimate,
associated with some error.

http://www.sciencedirect.com


Box 2. Phylogenetic uncertainty

Assume that we are interested in the relative rate of gain (p1) of state 1

(green) in a character with two states (purple or green). The states

could, for example, represent particular behaviours, life-history traits

or morphological features. When we reconstruct the evolution of this

character, it is based on a phylogenetic estimate that is associated with

some error. The phylogeny could, for example, be inferred from DNA

data.

The phylogenetic uncertainty can be expressed as a set of plausible

alternative trees (Figure Ia). These trees can either be generated by

bootstrapping the DNA data or by sampling the posterior of a

Bayesian phylogenetic analysis using MCMC (Markov chain Monte

Carlo) techniques. The phylogenetic uncertainty can be summarized in

terms of the frequencies of the different groups of species among the

alternative trees (Figure Ib). For instance, this summary indicates that

only 62% of the sampled trees group species 2 and 3.

If we used bootstrapping, each sampled tree would have a single

estimate of p1 associated with it. We cannot use bootstrapping to

estimate the mapping uncertainty associated with the estimation of p1

on each tree.

In a Bayesian analysis, we would formulate priors for all

parameters in the model for the DNA data as well as in the model

for the purple or green character, and then sample the posterior of the

composite model and the data. Instead of obtaining one p1 value

for each tree, we would implicitly be sampling each possible tree

for all possible p1 values, with each combination being sampled in

proportion to its posterior probability (Table I). The frequency with

which we sample each cell in the table is an estimate of the joint

probability of those parameter values. After we have obtained our

sample of joint probabilities, we can calculate the marginal distri-

bution (the marginal sums in the table) for any variable in the model

that we are interested in. Obviously, we would focus on the marginal

distribution for p1 (purple column), but other investigators might be

more interested in the trees (bottom row) or in any of the other

variables that might be included in the model.

The Bayesian marginal distribution of p1 takes both phylogenetic

and mapping uncertainty into account (Figure Ic: continuous line).

This can be compared with the distribution calculated on the true (or

best) tree, which reflects only mapping uncertainty (Figure Ic: dashed

line). In this case, based on data generated on the tree in Box 1, the

phylogenetic uncertainty flattens and shifts the posterior towards

the middle, making the conclusions less certain, but only slightly.

Mapping uncertainty is often going to be significant when we are

trying to reconstruct ancestral states for a single character with unique

evolutionary characteristics.
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Table I. MCMC sampling of posterior probability

Tree

1 2 3 4 Sum

0.0–0.2 52 67 22 40 181

0.2–0.4 113 172 88 64 437

p1 0.4–0.6 71 82 44 41 238

0.6–0.8 46 42 21 14 123

0.8–1.0 7 6 4 4 21

Sum 289 369 179 163 1000
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Bayesian inference

BAYESIAN INFERENCE provides a natural way of handling
uncertainty in complex models. For the example described
above, a Bayesian analysis is simply a generalization of
the conditional probability analysis [30]. Instead of lock-
ing p1 to a fixed value (Figure Ib in Box 1), a Bayesian
analysis allows it to vary over the whole range of possible
values (from 0 to 1) and then calculates the resulting
probability, known as the POSTERIOR PROBABILITY. To do this,
however, wemust first determine a PRIOR PROBABILITY for all
possible p1 values because the posterior probability is
proportional to the prior probability multiplied by the
likelihood (Bayes’ theorem). Many biologists feel uneasy
about specifying priors, but it is often possible to use
probability distributions that express little or no previous
knowledge about the studied parameters. For instance, we
can assume that all possible values of p1 are equally likely
(Figure Ic in Box 1). In calculating the probabilities of
ancestral states, each value of p1 is then weighted
according to its (posterior) probability (Figure Ic in
Box 1). The result is an inference of ancestral states that
www.sciencedirect.com
takes mapping uncertainty into account (Figure Id in
Box 1). Bayesian inference can easily be extended to
account for uncertainty in additional variables. For
instance, we might wish to account for the difference in
overall evolutionary rate between the mapped character
and the data used to estimate the phylogeny [30–32].
Phylogenetic uncertainty

The phylogeny on which a character of interest is mapped
is often based on an analysis of a large, typically molecular
dataset. The first attempts to address uncertainty in
phylogenetic estimates relied on BOOTSTRAPPING [33], or
more precisely nonparametric bootstrapping, a method
that has since become popular. In bootstrapping, large
numbers of pseudoreplicate datasets are created by
randomly sampling the characters in the original dataset
with replacement. The chosen method of estimating
phylogeny is then applied to the original character set
and to each of the bootstrapped datasets. The distribution
of the phylogenetic estimates from the bootstrapped data
approximates the sampling distribution of the original

http://www.sciencedirect.com


Box 3. Markov models

Markov models are used for random processes, in which the

probability of change depends only on the current state (the Markov

property). They are most easily understood in terms of their

instantaneous rate matrix, which describes the transition rates in an

infinitesimal amount of time. For a discrete character with two states,

0 or 1, the rate matrix Q is (Eqn I)

Q ¼ fqijg ¼
Kp1 p1

p0 Kp0

� �
; [Eqn I]

where qij refers to the rate in row i and column j of Q. There are two

different rates in the off-diagonals: q01Zp1 is the rate of 0/1

transitions, and q10Zp0 is the rate of 1/0 transitions. The diagonal

contains the loss rates. For instance, q00Z-p1 is the rate at which the

frequency of state 0 changes. The rate is negative because the

frequency decreases as the character evolves from 0 to 1. The rate at

which the frequency of a state decreases must balance the rate at

which it evolves into other states; thus, each row in Q sums to 0.

Markov models usually tend towards an equilibrium condition

(stationarity). The probability of being in a particular state i at

stationarity (the stationary frequency of the state) is usually denoted

pi and can be determined from the rate matrix Q. In the binary model,

the stationary frequencies correspond to the transition rates (scaling

disregarded).

To illustrate this, I ran three simulations under a two-state Markov

model with p1Z0.75 (and p0Z0.25). Each simulation had 200 inde-

pendently evolving characters; one was started with all characters in

state 0, one with all characters in state 1, and the last one with half the

characters in each state. In all cases, w75% of the characters ended

up in state 1 and w25% in state 0, as predicted by the stationary

frequencies (Figure I).

To use a Markov model for simulations or probability calculations,

we want to know the transition probabilities over a certain time period,

t. These are represented in a matrix denoted P(t), which is obtained by

integrating Q over time. For the binary Markov model, we get (Eqn II)

PðtÞ ¼ fpijðtÞgK¼
p0 þ p1e

Kmt p1 Kp1e
Kmt

p0 Kp0e
Kmt p1 þ p0e

Kmt

" #
; [Eqn II]

where m is a scaling factor. Each element of the P matrix summarizes

the probability of a particular state change over an infinite number of

change histories. For instance, p01(t) is the sum of the probability of

one change 0/1, three changes 0/1/0/1, five changes 0/1/
0/1/0/1, and so on, over time t.

The P matrix can be used to simulate the states at the terminals of

an evolutionary tree. We draw a starting state at the root of the tree

from the stationary frequencies. Then we use the P matrix for each

branch in turn to generate the end state of that branch.

To obtain a sample of change histories, we need to go back to the

Q matrix and utilize the fact that the waiting time (x) to the next change

is exponentially distributed (Eqn III):

PrðxÞ ¼
eKx lKqii

Kqii

; [Eqn III]

where Pr(x) is the probability of x and qii is the loss rate of the current

state. Thus, for a binary character in state 1, the waiting time to the

next change is distributed as (Eqn IV)

PrðxÞ ¼
eKx =p0

p0

: [Eqn IV]

When there are more than two states, the probability of the change

being from i to a particular state j is determined by (Eqn V)

PrðjÞ ¼
qijP
j:jsi qij

: [Eqn V]
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estimate. One of the advantages of bootstrapping is that it
can be applied to a wide array of methods for reconstruct-
ing phylogeny, including distance methods, parsimony,
maximum likelihood and even Bayesian inference.

Using bootstrapping to account for phylogenetic uncer-
tainty in studies of character evolution is straightforward:
simply map characters onto each of the bootstrap
estimates of phylogeny and then use the distribution of
these mappings to describe the effect of the uncertainty.
The approach seems to have been first discussed by
Felsenstein [12] and first applied by Richman and Price
[34]. Ronquist and Liljeblad [35] recently used the
technique extensively in reconstructing the origin of gall
wasps. Simple parsimony reconstruction suggested that
the first gall wasps lived in the Mediterranean and
induced single-chambered galls that were distinct swel-
lings of the seed-capsules of herbaceous Papaveraceae.
When phylogenetic uncertainty was taken into account, it
turned out that the robustness of these conclusions varied
considerably.

Unfortunately, bootstrapping cannot be used to address
mapping uncertainty. Bootstrapping DNA sequences, for
www.sciencedirect.com
example, will be of little help in understanding how
precise the mapping of a single behavioural character
might be on each of the possible trees. Bayesian inference,
however, can account for both mapping and phylogenetic
uncertainty across a heterogeneous dataset. In principle,
we only need to expand the probability model to include
topology, branch lengths, and other parameters necessary
to infer phylogeny from the available data. The posterior
probability distribution can no longer be calculated
analytically (with pen and paper) because it is so complex,
but we can sample from it using stochastic simulation in,
for example, so-called MARKOV CHAIN MONTE CARLO (MCMC)
techniques [36–40]. If the simulation is run long enough,
we obtain a valid sample of the posterior probability
distribution. Box 2 gives an example of how phylogenetic
and mapping uncertainty are handled in a Bayesian
analysis of a discrete character. Huelsenbeck and col-
leagues [31] first developed this approach, illustrating it
with an analysis of the origin of soldier aphids. Parsimony
suggested one origin and three losses of the soldier caste,
but the Bayesian analysis revealed that this conclusion
was uncertain. About a year later, Lutzoni and Pagel

http://www.sciencedirect.com


Box 4. Generating a Bayesian sample of character change

histories

To illustrate the uncertainty in reconstructing character evolution, it

is useful to have a sample of likely character change histories. In the

Bayesian approach, we first obtain a sample from the posterior

distribution of a phylogenetic analysis (as in Figure Ia in Box 2). For

each sampled tree, we draw a sample of ancestral states for the

character(s) we want to map (Figure Ia). This is done by pulling

conditional probabilities down the tree to obtain downpass prob-

abilities, and then drawing ancestral states one node at a time up

the tree from the downpass probabilities adjusted according to the

already drawn states [49]. Once we have a sample of ancestral states,

we simulate a character change history by drawing waiting times

between changes one branch at a time until the drawn history

matches the starting and ending states of that branch. This produces

a valid sample of character change history from the posterior

probability distribution (Figure Ib). A branch can have more than one

change, as illustrated by the left descendant of A. By repeating the

procedure for each tree in the sample, we can obtain thousands of

samples of character change similar to the one in Figure Ib. These

samples help reveal how the mapped characters evolve.

TRENDS in Ecology & Evolution 
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published similar work [41,42] on the origin of lichenized
fungi, but failed to apply a strict Bayesian approach to
mapping uncertainty. Recently, Huelsenbeck and Rannala
extended Bayesian MCMC techniques to the comparative
analysis of quantitative characters using Brownian
motion models [43].

An old argument is whether or not the character to be
mapped should be included in the phylogenetic analysis
[44–48]. The Bayesian posterior probabilities are always
based on all the available data. Assume that we are
mapping a behavioural trait onto a DNA phylogeny using
a composite model that describes both the evolution of the
DNA sequences and the behavioural character. Think of
the model as a table with many dimensions, each
dimension corresponding to a different parameter and
each cell to a combination of parameter values (Table I in
Box 2). The Bayesian MCMC analysis uses the data, the
model and the prior to estimate the probability of each cell
in the table (the joint probability distribution). The joint
probabilities are the same regardless of whether the DNA
phylogeny is derived first and the behavioural character
mapped on afterwards or if both data sources are
combined in a single analysis. After the analysis, the
investigator is free to focus on any parameter (axis of the
table) of interest by calculating its marginal distribution
(the marginal sums of that dimension in the table).

Character change histories

Bayesian inference can also be used to obtain samples of
character change histories from the posterior distribution
while accounting for both phylogenetic and mapping
uncertainty. Normally, dealing with change histories is a
nuisance because there are infinitely many of them.
Standard probability calculations avoid the problem by
using the transition probability (P) matrix, which sums
(integrates) over all possible realizations of character
change; only the starting and ending states matter
(Box 3). In a seminal paper, Nielsen [49] described how
we can nevertheless sample change histories. The idea is
to simulate character change on a set of MCMC samples,
working backwards. First, we use P matrices to draw a
sample of ancestral states given the observed tip states
and the parameter values of the MCMC sample. We then
simulate the substitution process, one branch at a time,
until we get a realization that is consistent with the fixed
starting and ending states of each branch (Box 4).

Nielsen’s method can be used to generate a range of
plausible scenarios for how evolution might have
occurred. We can also study the nature of character
evolution by comparing the sample of change histories
leading to the observed tip states with the change histories
expected from the model used for mapping [32,49]. The
expected histories are obtained by simulating character
evolution on the MCMC samples without fixing ancestral
and tip states first; this is referred to as a posterior
predictive distribution because it predicts future obser-
vations from the posterior. If the observed and expected
change histories differ, we can reject the mapping model
and learn something about character evolution. For
instance, we might find that there is more rate variation
than expected under an equal-rates model [49], we can
www.sciencedirect.com
detect positively selected sites using a model with no
across-site variation in selection pressure [49], and we can
reveal character correlation using a model assuming no
correlation [32].

In each of these cases, it would have been easy to use a
more sophisticatedmappingmodel, enabling us to obtain a
valid sample of change histories and to estimate par-
ameters such as the extent of across-site rate variation.
However, Nielsen’s posterior predictive approach enables
simple models to be used in addressing evolutionary
phenomena that would otherwise have been difficult to
model. For instance, evolutionary models that can vary
across organism lineages are complicated (but not imposs-
ible) to analyze with Bayesian MCMC techniques. With
Nielsen’s approach, we can study the basic properties of
complicated processes using simple standard models and
use these results in designing more realistic models.
Bayesian controversies

Bayesian posterior probabilities have an intuitive
interpretation. A tree with a posterior probability of 0.90
has a 90% chance of being true given that the model and
the priors are correct. This follows from the definition of
posterior probabilities and needs no mathematical proof.
Nevertheless, there have been simulation studies report-
ing a slight Bayesian bias (underestimate) under these
conditions [50–53]. This could be because of programming
error, but recent analyses suggest that the bias is caused

http://www.sciencedirect.com
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instead by branch lengths that are atypical (have low
probability) according to the prior.

However, many workers have voiced concerns recently
about the interpretation of Bayesian posterior probabil-
ities when the model is incorrect or unknown [54–58].
When the model used for Bayesian inference is over-
simplified, simulations demonstrate that erroneous trees
might have high posterior probabilities [54,55]. Empirical
observations also suggest that simple evolutionary models
tend to be associated with less uncertainty than are more
complex models [59], indicating that posterior probabil-
ities might be too high for real data when simple models
are used.

When model violation is caused by across-site hetero-
geneity, such as rate variation across sites, the nonpara-
metric bootstrap can sometimes reduce the support for
incorrect phylogenetic estimates [51,55]. Unfortunately,
the bootstrap is unreliable under these conditions because
of the model violations, so results with high bootstrap
support cannot be trusted [60]. A better option, which is
often available, is to use more realistic models in the
Bayesian phylogenetic analysis [59,61]. Some types of
model violations, including character correlation and
across-tree heterogeneity, will cause overconfidence in
both bootstrapped and Bayesian results [62]. The only way
forward in these cases is to use better probability models
for phylogenetic inference. Indeed, one of the most
exciting aspects of the Bayesian MCMC approach is its
efficiency in handling complex, realistic evolutionary
models, including character correlation models that are
not amenable to bootstrapping [62]. This is currently
spurring rapid model development, which will eventually
improve the overall accuracy and reliability of evolution-
ary inference.

When it is possible to find an adequate phylogenetic
model, one could argue that the Bayesian approach is
superior to bootstrapping in several ways. For example,
because of the complex geometry of tree space, the
bootstrap proportion is a biased estimate of a frequentist
p value even when the model is correct [60,63]. Adjusting
for this bias is computationally complex and is not
commonly done, but a recent study suggests that uncor-
rected bootstrap values drastically underestimate the true
values in large phylogenetic analyses [64].

Reducing uncertainty

Adding uncertainty to evolutionary inference might seem
like a mixed blessing, but the Bayesian approach can also
help evolutionary biologists to understand the sources of
uncertainty and how to improve their reconstructions. For
instance, Bayesian techniques enable us to untangle
phylogenetic and mapping uncertainty (Box 2). When
phylogenetic uncertainty is dominant, it is a good idea to
collect more data informative about the tree. However,
this is a futile solution when the major source of
uncertainty is the imprecision of character mapping. In
this case, one can sometimes improve the analysis
considerably by adding more taxa: the larger and denser
the sample of tips, the better the chances of reducing
mapping uncertainty. Another possibility is to incorporate
more background information when formulating the
www.sciencedirect.com
priors for the mapping model. For instance, if we were
tracing the infection pathway of a virus and had
reasonable previous information from other studies on
its transmission rate, we could increase the precision of
the evolutionary reconstruction by including this infor-
mation in the analysis. This is not subjective inference
worthy of suspicion; it is a smart and cost-effective way of
drawing on the available information. Why not use the
wheel instead of reinventing it every time a new dataset is
analyzed?
Summary

With the advent of Bayesian methods, it is relatively easy
to account for both mapping and phylogenetic uncertainty
in reconstructing ancestral states and histories of char-
acter change for the first time. The techniques have been
demonstrated for the simplest and most versatile evol-
utionary models, but many exciting models remain to be
explored. As always, the development of user-friendly
software lags behind, but free programs for Bayesian
estimation of ancestral states (MRBAYES, all common
platforms; http://mrbayes.net) and history of character
change (SIMMAP, Mac OS X only; http://www.simmap.
com) are available and more should be added in the near
future. It is the beginning of an exciting new era in
evolutionary reconstruction.
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